YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Monitoring the Monsoon in the Himalayas: Observations in Central Nepal, June 2001

    Source: Monthly Weather Review:;2003:;volume( 131 ):;issue: 007::page 1408
    Author:
    Barros, Ana P.
    ,
    Lang, Timothy J.
    DOI: 10.1175/1520-0493(2003)131<1408:MTMITH>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The Monsoon Himalayan Precipitation Experiment (MOHPREX) occurred during June 2001 along the south slopes of the Himalayas in central Nepal. Radiosondes were launched around the clock from two sites, one in the Marsyandi River basin on the eastern footslopes of the Annapurna range, and one farther to the southwest near the border with India. The flights supported rainfall and other hydrometeorological observations (including surface winds) from the Marsyandi network that has been operated in this region since the spring of 1999. The thermodynamic profiles obtained from the soundings support the observed nocturnal maximum in rainfall during the monsoon, with total column moisture and instability maximized just before rainfall peaks. Coinciding with the appearance of a monsoon depression over central India, the onset of the monsoon in this region was characterized by a weeklong weakening of the upper-level westerlies, and an increase in moisture and convective instability. The vertical structure of convection during the project was intense at times, and frequent thunder and lightning were observed. This is suggestive of monsoon break convection, which is expected to be predominant since the monsoon had not fully matured by the end of the month. Comparisons of the MOHPREX data with the NCEP?NCAR reanalysis data reveal that upper-level winds are characterized relatively well by the reanalysis, taking into account the coarse model topography. However, moisture is severely underestimated, leading to significant underestimation of rainfall by the reanalysis. The interaction of the ambient monsoon flow with the south slopes of the Himalayas, modulated by the diurnal variability of atmospheric state, is suggested as the primary cause of the nocturnal peak in rainfall.
    • Download: (2.745Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Monitoring the Monsoon in the Himalayas: Observations in Central Nepal, June 2001

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205222
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorBarros, Ana P.
    contributor authorLang, Timothy J.
    date accessioned2017-06-09T16:15:01Z
    date available2017-06-09T16:15:01Z
    date copyright2003/07/01
    date issued2003
    identifier issn0027-0644
    identifier otherams-64141.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205222
    description abstractThe Monsoon Himalayan Precipitation Experiment (MOHPREX) occurred during June 2001 along the south slopes of the Himalayas in central Nepal. Radiosondes were launched around the clock from two sites, one in the Marsyandi River basin on the eastern footslopes of the Annapurna range, and one farther to the southwest near the border with India. The flights supported rainfall and other hydrometeorological observations (including surface winds) from the Marsyandi network that has been operated in this region since the spring of 1999. The thermodynamic profiles obtained from the soundings support the observed nocturnal maximum in rainfall during the monsoon, with total column moisture and instability maximized just before rainfall peaks. Coinciding with the appearance of a monsoon depression over central India, the onset of the monsoon in this region was characterized by a weeklong weakening of the upper-level westerlies, and an increase in moisture and convective instability. The vertical structure of convection during the project was intense at times, and frequent thunder and lightning were observed. This is suggestive of monsoon break convection, which is expected to be predominant since the monsoon had not fully matured by the end of the month. Comparisons of the MOHPREX data with the NCEP?NCAR reanalysis data reveal that upper-level winds are characterized relatively well by the reanalysis, taking into account the coarse model topography. However, moisture is severely underestimated, leading to significant underestimation of rainfall by the reanalysis. The interaction of the ambient monsoon flow with the south slopes of the Himalayas, modulated by the diurnal variability of atmospheric state, is suggested as the primary cause of the nocturnal peak in rainfall.
    publisherAmerican Meteorological Society
    titleMonitoring the Monsoon in the Himalayas: Observations in Central Nepal, June 2001
    typeJournal Paper
    journal volume131
    journal issue7
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2003)131<1408:MTMITH>2.0.CO;2
    journal fristpage1408
    journal lastpage1427
    treeMonthly Weather Review:;2003:;volume( 131 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian