YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Diagnosis of the Katabatic Wind Influence on the Wintertime Antarctic Surface Wind Field from Numerical Simulations

    Source: Monthly Weather Review:;2003:;volume( 131 ):;issue: 006::page 1128
    Author:
    Parish, Thomas R.
    ,
    Cassano, John J.
    DOI: 10.1175/1520-0493(2003)131<1128:DOTKWI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Katabatic winds have long been recognized as one of the key climatic variables of the low-level Antarctic environment. Antarctic surface winds display a high degree of persistence with mean directions related to the local topographic configuration of the ice sheet, consistent with katabatic forcing. Continental orography also constrains the atmospheric boundary layer motions through blocking and cold air damming. Finally, the coastal rim about the Antarctic continent is among the most active baroclinic zones on Earth. The establishment of the low-level wind field over Antarctica is thus potentially the result of a number of interacting processes. To quantify the forcing of the wintertime surface wind field over the Antarctic continent, two numerical strategies are presented. First, idealized numerical simulations are conducted to illustrate the strong orographic control of the low-level wind field. Second, a series of daily numerical simulations using the fifth-generation Pennsylvania State University?National Center for Atmospheric Research Mesoscale Model (MM5) has been performed for the midwinter month July 2001. The horizontal pressure gradient as depicted in MM5 was added to the standard output and an analysis was conducted to understand the forcing of the low-level wind field. Horizontal pressure gradients at the lowest sigma level (6 m above the surface) revealed a net forcing primarily down the local topographic fall line. Analyses of the katabatic forcing showed that it was a significant component of the total horizontal pressure gradient force over the interior of the continent. Near the coast and extending several hundred kilometers inland, however, effects of the ambient pressure gradient force were typically comparable to the katabatic forcing and often considerably more important. This suggests that the role of topography in shaping the Antarctic boundary layer winds through blocking and subsequent adjustment is critical to the establishment of the low-level wintertime Antarctic wind field.
    • Download: (1.001Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Diagnosis of the Katabatic Wind Influence on the Wintertime Antarctic Surface Wind Field from Numerical Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205204
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorParish, Thomas R.
    contributor authorCassano, John J.
    date accessioned2017-06-09T16:14:55Z
    date available2017-06-09T16:14:55Z
    date copyright2003/06/01
    date issued2003
    identifier issn0027-0644
    identifier otherams-64124.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205204
    description abstractKatabatic winds have long been recognized as one of the key climatic variables of the low-level Antarctic environment. Antarctic surface winds display a high degree of persistence with mean directions related to the local topographic configuration of the ice sheet, consistent with katabatic forcing. Continental orography also constrains the atmospheric boundary layer motions through blocking and cold air damming. Finally, the coastal rim about the Antarctic continent is among the most active baroclinic zones on Earth. The establishment of the low-level wind field over Antarctica is thus potentially the result of a number of interacting processes. To quantify the forcing of the wintertime surface wind field over the Antarctic continent, two numerical strategies are presented. First, idealized numerical simulations are conducted to illustrate the strong orographic control of the low-level wind field. Second, a series of daily numerical simulations using the fifth-generation Pennsylvania State University?National Center for Atmospheric Research Mesoscale Model (MM5) has been performed for the midwinter month July 2001. The horizontal pressure gradient as depicted in MM5 was added to the standard output and an analysis was conducted to understand the forcing of the low-level wind field. Horizontal pressure gradients at the lowest sigma level (6 m above the surface) revealed a net forcing primarily down the local topographic fall line. Analyses of the katabatic forcing showed that it was a significant component of the total horizontal pressure gradient force over the interior of the continent. Near the coast and extending several hundred kilometers inland, however, effects of the ambient pressure gradient force were typically comparable to the katabatic forcing and often considerably more important. This suggests that the role of topography in shaping the Antarctic boundary layer winds through blocking and subsequent adjustment is critical to the establishment of the low-level wintertime Antarctic wind field.
    publisherAmerican Meteorological Society
    titleDiagnosis of the Katabatic Wind Influence on the Wintertime Antarctic Surface Wind Field from Numerical Simulations
    typeJournal Paper
    journal volume131
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2003)131<1128:DOTKWI>2.0.CO;2
    journal fristpage1128
    journal lastpage1139
    treeMonthly Weather Review:;2003:;volume( 131 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian