YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seamless Poleward Atmospheric Energy Transports and Implications for the Hadley Circulation

    Source: Journal of Climate:;2003:;volume( 016 ):;issue: 022::page 3706
    Author:
    Trenberth, Kevin E.
    ,
    Stepaniak, David P.
    DOI: 10.1175/1520-0442(2003)016<3706:SPAETA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A detailed vertically integrated atmospheric heat and energy budget is presented along with estimated heat budgets at the surface and top-of-atmosphere for the subtropics. It is shown that the total energy transports are remarkably seamless in spite of greatly varying mechanisms. From the Tropics to about 31° latitude, the primary transport mechanisms are the Hadley and Walker overturning circulations. In the extratropics the energy transports are carried out by baroclinic eddies broadly organized into storm tracks and quasi-stationary waves that covary in a symbiotic way as the location and activity in storm tracks are determined by, and in turn help maintain through eddy transports, the quasi-stationary flow. In the upward branch of the Hadley cell, the predominant diabatic process is latent heating that results from convergence of moisture by the circulation itself. Hence large poleward transports of dry static energy are compensated by equatorward transports of latent energy, resulting in a modest poleward transport of moist static energy. The subsidence warming in the downward branch is compensated by cooling in the subtropics that mainly arises from energy transport to higher latitudes by transient baroclinic eddies that are stronger in the winter hemisphere. Effectively, the outgoing longwave radiation to space is distributed over middle and high latitudes and is not limited to the clear dry regions in the subtropics. Further, some of the radiative cooling in the subtropics is a consequence of the circulation. Hence the cooling by transient eddies in the subtropics is a fundamental driver of the observed Hadley circulation and realizes the seamless transport from Tropics to extratropics, while tropical sea surface temperatures over the oceans determine where the upward branch is located. The relatively clear skies in the subtropics further provide for ample absorption of solar radiation at the surface where it feeds strong evaporation, which exceeds precipitation, and supplies the equatorward flow of latent energy into the upward branch of the Hadley circulation as well as the poleward transports into midlatitude storm tracks. The evaporation is sufficiently strong that it is also compensated by a subsurface ocean heat transport that in turn is driven by the Hadley circulation surface winds.
    • Download: (1.244Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seamless Poleward Atmospheric Energy Transports and Implications for the Hadley Circulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205179
    Collections
    • Journal of Climate

    Show full item record

    contributor authorTrenberth, Kevin E.
    contributor authorStepaniak, David P.
    date accessioned2017-06-09T16:14:52Z
    date available2017-06-09T16:14:52Z
    date copyright2003/11/01
    date issued2003
    identifier issn0894-8755
    identifier otherams-6410.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205179
    description abstractA detailed vertically integrated atmospheric heat and energy budget is presented along with estimated heat budgets at the surface and top-of-atmosphere for the subtropics. It is shown that the total energy transports are remarkably seamless in spite of greatly varying mechanisms. From the Tropics to about 31° latitude, the primary transport mechanisms are the Hadley and Walker overturning circulations. In the extratropics the energy transports are carried out by baroclinic eddies broadly organized into storm tracks and quasi-stationary waves that covary in a symbiotic way as the location and activity in storm tracks are determined by, and in turn help maintain through eddy transports, the quasi-stationary flow. In the upward branch of the Hadley cell, the predominant diabatic process is latent heating that results from convergence of moisture by the circulation itself. Hence large poleward transports of dry static energy are compensated by equatorward transports of latent energy, resulting in a modest poleward transport of moist static energy. The subsidence warming in the downward branch is compensated by cooling in the subtropics that mainly arises from energy transport to higher latitudes by transient baroclinic eddies that are stronger in the winter hemisphere. Effectively, the outgoing longwave radiation to space is distributed over middle and high latitudes and is not limited to the clear dry regions in the subtropics. Further, some of the radiative cooling in the subtropics is a consequence of the circulation. Hence the cooling by transient eddies in the subtropics is a fundamental driver of the observed Hadley circulation and realizes the seamless transport from Tropics to extratropics, while tropical sea surface temperatures over the oceans determine where the upward branch is located. The relatively clear skies in the subtropics further provide for ample absorption of solar radiation at the surface where it feeds strong evaporation, which exceeds precipitation, and supplies the equatorward flow of latent energy into the upward branch of the Hadley circulation as well as the poleward transports into midlatitude storm tracks. The evaporation is sufficiently strong that it is also compensated by a subsurface ocean heat transport that in turn is driven by the Hadley circulation surface winds.
    publisherAmerican Meteorological Society
    titleSeamless Poleward Atmospheric Energy Transports and Implications for the Hadley Circulation
    typeJournal Paper
    journal volume16
    journal issue22
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2003)016<3706:SPAETA>2.0.CO;2
    journal fristpage3706
    journal lastpage3722
    treeJournal of Climate:;2003:;volume( 016 ):;issue: 022
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian