YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Covariability of Components of Poleward Atmospheric Energy Transports on Seasonal and Interannual Timescales

    Source: Journal of Climate:;2003:;volume( 016 ):;issue: 022::page 3691
    Author:
    Trenberth, Kevin E.
    ,
    Stepaniak, David P.
    DOI: 10.1175/1520-0442(2003)016<3691:COCOPA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Vertically integrated atmospheric energy and heat budgets are presented with a focus on the zonal mean transports and divergences of dry static energy, latent energy, their sum (the moist static energy), and the total (which includes kinetic energy), as well as their partitioning into the within-month transient and quasi-stationary components. The latter includes the long-term mean and interannual variability from 1979 to 2001 and, in the Tropics, corresponds to the large-scale overturning global monsoon and the embedded Hadley and Walker circulations. In the extratropics, it includes the quasi-stationary planetary waves, which are primarily a factor in the Northern Hemisphere winter. In addition to the mean annual cycle, results are presented for the interannual variability. In the extratropics, poleward transports of both latent and dry static energy reinforce one another. However, the results highlight strong cancellations between the transports of latent and dry static energy in the Tropics as moisture is converted into latent heat, and also between quasi-stationary and transient components in the extratropics. Hence the total energy transports and divergences are fairly seamless with latitude and the total interannual variability is substantially less than that of the components. The strong interplay between the transient and quasi-stationary waves in the atmosphere highlights the symbiotic relationship between them, as the stationary waves determine the location and intensity of the storm tracks while the transient disturbances help maintain the stationary waves. These results highlight that observationally there is a very strong constraint that the global energy budget places on atmospheric dynamics.
    • Download: (1.394Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Covariability of Components of Poleward Atmospheric Energy Transports on Seasonal and Interannual Timescales

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205167
    Collections
    • Journal of Climate

    Show full item record

    contributor authorTrenberth, Kevin E.
    contributor authorStepaniak, David P.
    date accessioned2017-06-09T16:14:50Z
    date available2017-06-09T16:14:50Z
    date copyright2003/11/01
    date issued2003
    identifier issn0894-8755
    identifier otherams-6409.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205167
    description abstractVertically integrated atmospheric energy and heat budgets are presented with a focus on the zonal mean transports and divergences of dry static energy, latent energy, their sum (the moist static energy), and the total (which includes kinetic energy), as well as their partitioning into the within-month transient and quasi-stationary components. The latter includes the long-term mean and interannual variability from 1979 to 2001 and, in the Tropics, corresponds to the large-scale overturning global monsoon and the embedded Hadley and Walker circulations. In the extratropics, it includes the quasi-stationary planetary waves, which are primarily a factor in the Northern Hemisphere winter. In addition to the mean annual cycle, results are presented for the interannual variability. In the extratropics, poleward transports of both latent and dry static energy reinforce one another. However, the results highlight strong cancellations between the transports of latent and dry static energy in the Tropics as moisture is converted into latent heat, and also between quasi-stationary and transient components in the extratropics. Hence the total energy transports and divergences are fairly seamless with latitude and the total interannual variability is substantially less than that of the components. The strong interplay between the transient and quasi-stationary waves in the atmosphere highlights the symbiotic relationship between them, as the stationary waves determine the location and intensity of the storm tracks while the transient disturbances help maintain the stationary waves. These results highlight that observationally there is a very strong constraint that the global energy budget places on atmospheric dynamics.
    publisherAmerican Meteorological Society
    titleCovariability of Components of Poleward Atmospheric Energy Transports on Seasonal and Interannual Timescales
    typeJournal Paper
    journal volume16
    journal issue22
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2003)016<3691:COCOPA>2.0.CO;2
    journal fristpage3691
    journal lastpage3705
    treeJournal of Climate:;2003:;volume( 016 ):;issue: 022
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian