YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Cyclone Phase Space Derived from Thermal Wind and Thermal Asymmetry

    Source: Monthly Weather Review:;2003:;volume( 131 ):;issue: 004::page 585
    Author:
    Hart, Robert E.
    DOI: 10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: An objectively defined three-dimensional cyclone phase space is proposed and explored. Cyclone phase is described using the parameters of storm-motion-relative thickness asymmetry (symmetric/nonfrontal versus asymmetric/frontal) and vertical derivative of horizontal height gradient (cold- versus warm-core structure via the thermal wind relationship). A cyclone's life cycle can be analyzed within this phase space, providing substantial insight into the cyclone structural evolution. An objective classification of cyclone phase is possible, unifying the basic structural description of tropical, extratropical, and hybrid cyclones into a continuum. Stereotypical symmetric warm-core (tropical cyclone) and asymmetric cold-core (extratropical cyclone) life cycles are illustrated using 1° Navy Operational Global Atmospheric Prediction System (NOGAPS) operational analyses and 2.5° NCEP?NCAR reanalyses. The transitions between cyclone phases are clearly illustrated within the phase space, including extratropical transition, subtropical and tropical transition, and the development of warm seclusions within extratropical cyclones. The planet's northwestern hemisphere inhabitance of the proposed phase space between 1980 and 1999 is examined using NCEP?NCAR 2.5° reanalyses. Despite the inability to adequately resolve tropical cyclones at the coarse 2.5° resolution, warm-core cyclones (primarily warm-seclusion extratropical cyclones) have a mean intensity that is 10 hPa lower than that of cold-core cyclones. Warm-core cyclones also have a much larger variability for intensity distribution, with an increased occurrence of lower MSLP. Further, at 2.5° resolution the lowest analyzed MSLP for a warm-core cyclone was 14 hPa lower than that for a cyclone that remains cold core. These results suggest that cyclones that maintain solely a cold-core structure (no warm-seclusion or tropical development) may be associated with a significantly weaker minimum observed intensity at 2.5° resolution, although further examination using higher-resolution data is required to refine this. Phase diagrams are being produced in real time to improve the forecasting of cyclone phase evolution and phase transitions, and to provide measures of phase predictability through ensembling of multiple models. The likelihood of warm-core development in cyclones can be anticipated by applying the diagnostics to various model forecasts, illuminating the potential for large intensity changes when the explicit model intensity forecasts may be insufficient.
    • Download: (3.112Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Cyclone Phase Space Derived from Thermal Wind and Thermal Asymmetry

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205162
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHart, Robert E.
    date accessioned2017-06-09T16:14:50Z
    date available2017-06-09T16:14:50Z
    date copyright2003/04/01
    date issued2003
    identifier issn0027-0644
    identifier otherams-64087.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205162
    description abstractAn objectively defined three-dimensional cyclone phase space is proposed and explored. Cyclone phase is described using the parameters of storm-motion-relative thickness asymmetry (symmetric/nonfrontal versus asymmetric/frontal) and vertical derivative of horizontal height gradient (cold- versus warm-core structure via the thermal wind relationship). A cyclone's life cycle can be analyzed within this phase space, providing substantial insight into the cyclone structural evolution. An objective classification of cyclone phase is possible, unifying the basic structural description of tropical, extratropical, and hybrid cyclones into a continuum. Stereotypical symmetric warm-core (tropical cyclone) and asymmetric cold-core (extratropical cyclone) life cycles are illustrated using 1° Navy Operational Global Atmospheric Prediction System (NOGAPS) operational analyses and 2.5° NCEP?NCAR reanalyses. The transitions between cyclone phases are clearly illustrated within the phase space, including extratropical transition, subtropical and tropical transition, and the development of warm seclusions within extratropical cyclones. The planet's northwestern hemisphere inhabitance of the proposed phase space between 1980 and 1999 is examined using NCEP?NCAR 2.5° reanalyses. Despite the inability to adequately resolve tropical cyclones at the coarse 2.5° resolution, warm-core cyclones (primarily warm-seclusion extratropical cyclones) have a mean intensity that is 10 hPa lower than that of cold-core cyclones. Warm-core cyclones also have a much larger variability for intensity distribution, with an increased occurrence of lower MSLP. Further, at 2.5° resolution the lowest analyzed MSLP for a warm-core cyclone was 14 hPa lower than that for a cyclone that remains cold core. These results suggest that cyclones that maintain solely a cold-core structure (no warm-seclusion or tropical development) may be associated with a significantly weaker minimum observed intensity at 2.5° resolution, although further examination using higher-resolution data is required to refine this. Phase diagrams are being produced in real time to improve the forecasting of cyclone phase evolution and phase transitions, and to provide measures of phase predictability through ensembling of multiple models. The likelihood of warm-core development in cyclones can be anticipated by applying the diagnostics to various model forecasts, illuminating the potential for large intensity changes when the explicit model intensity forecasts may be insufficient.
    publisherAmerican Meteorological Society
    titleA Cyclone Phase Space Derived from Thermal Wind and Thermal Asymmetry
    typeJournal Paper
    journal volume131
    journal issue4
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2
    journal fristpage585
    journal lastpage616
    treeMonthly Weather Review:;2003:;volume( 131 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian