YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Choice of Variable for Atmospheric Moisture Analysis

    Source: Monthly Weather Review:;2003:;volume( 131 ):;issue: 001::page 155
    Author:
    Dee, Dick P.
    ,
    da Silva, Arlindo M.
    DOI: 10.1175/1520-0493(2003)131<0155:TCOVFA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The implications of using different control variables for the analysis of moisture observations in a global atmospheric data assimilation system are investigated. A moisture analysis based on either mixing ratio or specific humidity is prone to large extrapolation errors, due to the high variability in space and time of these parameters and to the difficulties in modeling their error covariances. Using the logarithm of specific humidity does not alleviate these problems, and has the further disadvantage that very dry background estimates cannot be effectively corrected by observations. Relative humidity is a better choice from a statistical point of view, because this field is spatially and temporally more coherent and error statistics are therefore easier to obtain. If, however, the analysis is designed to preserve relative humidity in the absence of moisture observations, then the analyzed specific humidity field depends entirely on analyzed temperature changes. If the model has a cool bias in the stratosphere this will lead to an unstable accumulation of excess moisture there. A pseudo-relative humidity can be defined by scaling the mixing ratio by the background saturation mixing ratio. A univariate pseudo-relative humidity analysis will preserve the specific humidity field in the absence of moisture observations. A pseudo-relative humidity analysis is shown to be equivalent to a mixing ratio analysis with flow-dependent variance specifications. In the presence of multivariate (temperature?moisture) observations it produces analyzed relative humidity values that are nearly identical to those produced by a relative humidity analysis. Based on a time series analysis of radiosonde observed-minus-background differences it appears to be more justifiable to neglect specific humidity?temperature correlations (in a univariate pseudo-relative humidity analysis) than to neglect relative humidity?temperature correlations (in a univariate relative humidity analysis). A pseudo-relative humidity analysis can be implemented in an existing moisture analysis system simply by scaling the observed-minus-background residuals prior to solving the analysis equation, and rescaling the analyzed increments afterward.
    • Download: (1.445Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Choice of Variable for Atmospheric Moisture Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205136
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorDee, Dick P.
    contributor authorda Silva, Arlindo M.
    date accessioned2017-06-09T16:14:45Z
    date available2017-06-09T16:14:45Z
    date copyright2003/01/01
    date issued2003
    identifier issn0027-0644
    identifier otherams-64063.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205136
    description abstractThe implications of using different control variables for the analysis of moisture observations in a global atmospheric data assimilation system are investigated. A moisture analysis based on either mixing ratio or specific humidity is prone to large extrapolation errors, due to the high variability in space and time of these parameters and to the difficulties in modeling their error covariances. Using the logarithm of specific humidity does not alleviate these problems, and has the further disadvantage that very dry background estimates cannot be effectively corrected by observations. Relative humidity is a better choice from a statistical point of view, because this field is spatially and temporally more coherent and error statistics are therefore easier to obtain. If, however, the analysis is designed to preserve relative humidity in the absence of moisture observations, then the analyzed specific humidity field depends entirely on analyzed temperature changes. If the model has a cool bias in the stratosphere this will lead to an unstable accumulation of excess moisture there. A pseudo-relative humidity can be defined by scaling the mixing ratio by the background saturation mixing ratio. A univariate pseudo-relative humidity analysis will preserve the specific humidity field in the absence of moisture observations. A pseudo-relative humidity analysis is shown to be equivalent to a mixing ratio analysis with flow-dependent variance specifications. In the presence of multivariate (temperature?moisture) observations it produces analyzed relative humidity values that are nearly identical to those produced by a relative humidity analysis. Based on a time series analysis of radiosonde observed-minus-background differences it appears to be more justifiable to neglect specific humidity?temperature correlations (in a univariate pseudo-relative humidity analysis) than to neglect relative humidity?temperature correlations (in a univariate relative humidity analysis). A pseudo-relative humidity analysis can be implemented in an existing moisture analysis system simply by scaling the observed-minus-background residuals prior to solving the analysis equation, and rescaling the analyzed increments afterward.
    publisherAmerican Meteorological Society
    titleThe Choice of Variable for Atmospheric Moisture Analysis
    typeJournal Paper
    journal volume131
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2003)131<0155:TCOVFA>2.0.CO;2
    journal fristpage155
    journal lastpage171
    treeMonthly Weather Review:;2003:;volume( 131 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian