YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predictability of the Seasonal Mean Atmospheric Circulation during Autumn, Winter, and Spring

    Source: Journal of Climate:;2003:;volume( 016 ):;issue: 022::page 3629
    Author:
    Straus, David
    ,
    Shukla, J.
    ,
    Paolino, Dan
    ,
    Schubert, Siegfried
    ,
    Suarez, Max
    ,
    Pegion, Philip
    ,
    Kumar, Arun
    DOI: 10.1175/1520-0442(2003)016<3629:POTSMA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The predictability of the autumn, boreal winter, and spring seasons with foreknowledge of sea surface temperatures (SSTs) is studied using ensembles of seasonal simulations of three general circulation models (GCMs): the Center for Ocean?Land?Atmosphere Studies (COLA) GCM, the National Aeronautics and Space Administration Seasonal to Interannual Prediction Project (NSIPP) GCM, and the National Centers for Environmental Prediction (NCEP) GCM. Warm-minus-cold composites of the ensemble mean and observed tropical Pacific precipitation, averaged for the three warmest El Niño and three coldest La Niña winters, show large positive anomalies near the date line that extend eastward to the South American coast. The same is true for composites of the spring following the event. In the composites of the autumn preceding the event, the precipitation is weaker and shifted off the equator in the far eastern Pacific, where equatorial SSTs are too low to support convection. The corresponding boreal winter 200-hPa height composites show strong signals in the Tropics and midlatitudes of both hemispheres. The subsequent spring composites are similar, but weaker in the northern extratropics. In the preceding autumn composites, the overall height signal is quite weak, except in the southern Pacific. The model dependence of the signal (variance of ensemble means) and noise (variance about the ensemble means) of the seasonal mean 200-hPa height is small, a result that holds for all three seasons and is in contrast to earlier studies. The signal-to-noise ratio is significantly greater than unity in the Tropics (all seasons), the northern Pacific and continental North America subtropics (boreal winter and spring), and the southern Pacific subtropics (boreal autumn). Rotated empirical orthogonal function analysis of the tropical Pacific SST recovers El Niño?like dominant patterns in boreal winter and spring, but emphasizes two SST patterns in autumn, one with largest SST in the far eastern tropical Pacific and one with a maximum nearer the date line. Two methods are used to assess the precipitation and height field responses to these patterns: linear regression of the ensemble means on the principal component (PC) time series of SST and identification of patterns that optimize the signal-to-noise ratio. The two methods yield remarkably similar results. The optimal height patterns for boreal winter and spring are similar, although the spring response over the northern extratropics is somewhat weaker, and some subtle changes in phase are found in all three GCMs. The associated optimal time series have serial correlations with the leading PC of SST that exceed 0.9 for all GCMs for winter and spring. For autumn the time series of the leading two optimal patterns each has a serial correlation with the corresponding PC of SST that exceeds 0.7 for the COLA and NSIPP GCMs. The autumn 200-hPa-height leading optimal pattern (response to eastern Pacific SST) is quite weak, representing nearly uniform tropical warming. The second optimal pattern (response to central Pacific SST) shows a robust wave train in the southern Pacific, with a consistent belt of low height over northern midlatitudes.
    • Download: (5.322Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predictability of the Seasonal Mean Atmospheric Circulation during Autumn, Winter, and Spring

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205123
    Collections
    • Journal of Climate

    Show full item record

    contributor authorStraus, David
    contributor authorShukla, J.
    contributor authorPaolino, Dan
    contributor authorSchubert, Siegfried
    contributor authorSuarez, Max
    contributor authorPegion, Philip
    contributor authorKumar, Arun
    date accessioned2017-06-09T16:14:43Z
    date available2017-06-09T16:14:43Z
    date copyright2003/11/01
    date issued2003
    identifier issn0894-8755
    identifier otherams-6405.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205123
    description abstractThe predictability of the autumn, boreal winter, and spring seasons with foreknowledge of sea surface temperatures (SSTs) is studied using ensembles of seasonal simulations of three general circulation models (GCMs): the Center for Ocean?Land?Atmosphere Studies (COLA) GCM, the National Aeronautics and Space Administration Seasonal to Interannual Prediction Project (NSIPP) GCM, and the National Centers for Environmental Prediction (NCEP) GCM. Warm-minus-cold composites of the ensemble mean and observed tropical Pacific precipitation, averaged for the three warmest El Niño and three coldest La Niña winters, show large positive anomalies near the date line that extend eastward to the South American coast. The same is true for composites of the spring following the event. In the composites of the autumn preceding the event, the precipitation is weaker and shifted off the equator in the far eastern Pacific, where equatorial SSTs are too low to support convection. The corresponding boreal winter 200-hPa height composites show strong signals in the Tropics and midlatitudes of both hemispheres. The subsequent spring composites are similar, but weaker in the northern extratropics. In the preceding autumn composites, the overall height signal is quite weak, except in the southern Pacific. The model dependence of the signal (variance of ensemble means) and noise (variance about the ensemble means) of the seasonal mean 200-hPa height is small, a result that holds for all three seasons and is in contrast to earlier studies. The signal-to-noise ratio is significantly greater than unity in the Tropics (all seasons), the northern Pacific and continental North America subtropics (boreal winter and spring), and the southern Pacific subtropics (boreal autumn). Rotated empirical orthogonal function analysis of the tropical Pacific SST recovers El Niño?like dominant patterns in boreal winter and spring, but emphasizes two SST patterns in autumn, one with largest SST in the far eastern tropical Pacific and one with a maximum nearer the date line. Two methods are used to assess the precipitation and height field responses to these patterns: linear regression of the ensemble means on the principal component (PC) time series of SST and identification of patterns that optimize the signal-to-noise ratio. The two methods yield remarkably similar results. The optimal height patterns for boreal winter and spring are similar, although the spring response over the northern extratropics is somewhat weaker, and some subtle changes in phase are found in all three GCMs. The associated optimal time series have serial correlations with the leading PC of SST that exceed 0.9 for all GCMs for winter and spring. For autumn the time series of the leading two optimal patterns each has a serial correlation with the corresponding PC of SST that exceeds 0.7 for the COLA and NSIPP GCMs. The autumn 200-hPa-height leading optimal pattern (response to eastern Pacific SST) is quite weak, representing nearly uniform tropical warming. The second optimal pattern (response to central Pacific SST) shows a robust wave train in the southern Pacific, with a consistent belt of low height over northern midlatitudes.
    publisherAmerican Meteorological Society
    titlePredictability of the Seasonal Mean Atmospheric Circulation during Autumn, Winter, and Spring
    typeJournal Paper
    journal volume16
    journal issue22
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2003)016<3629:POTSMA>2.0.CO;2
    journal fristpage3629
    journal lastpage3649
    treeJournal of Climate:;2003:;volume( 016 ):;issue: 022
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian