YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Sensitivity of Numerically Simulated Cyclic Mesocyclogenesis to Variations in Model Physical and Computational Parameters

    Source: Monthly Weather Review:;2002:;volume( 130 ):;issue: 011::page 2671
    Author:
    Adlerman, Edwin J.
    ,
    Droegemeier, Kelvin K.
    DOI: 10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In a previous paper, a three-dimensional numerical model was used to study the evolution of successive mesocyclones produced by a single supercell storm, that is, cyclic mesocyclogenesis. Not all supercells, simulated or observed, exhibit this behavior, and few previous papers in the literature mention it. As a first step toward identifying and understanding the conditions needed to produce cyclic redevelopments within supercell updrafts, this paper examines the effect on cyclic mesocyclogenesis of variations in model physical and computational parameters. Specified changes in grid spacing, numerical diffusion, microphysics options, and the coefficient of surface friction are found to alter, in some cases dramatically, the number and duration of simulated mesocyclone cycles. For example, a decrease from 2.0 to 0.5 km in horizontal grid spacing transforms a nearly perfectly steady, noncycling supercell into one that exhibits three distinct mesocyclone cycles during the same time period. Decreasing the minimum vertical grid spacing at the ground tends to speed up the cycling process, while increasing it has the opposite effect. Ice microphysics is shown to cut short the initial cycling, while both simple surface friction and increased numerical diffusion tend to slow it down. Combining competing effects (i.e., ice microphysics with friction) tends to bring the simulation back to the evolution found in the control case. Explanations for these results are offered in the context of nonlinear feedbacks associated with the cycling process. In addition, the implications of these findings in our understanding of storm behavior as well as in the context of storm-scale numerical weather prediction are discussed.
    • Download: (1.151Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Sensitivity of Numerically Simulated Cyclic Mesocyclogenesis to Variations in Model Physical and Computational Parameters

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205095
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorAdlerman, Edwin J.
    contributor authorDroegemeier, Kelvin K.
    date accessioned2017-06-09T16:14:39Z
    date available2017-06-09T16:14:39Z
    date copyright2002/11/01
    date issued2002
    identifier issn0027-0644
    identifier otherams-64026.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205095
    description abstractIn a previous paper, a three-dimensional numerical model was used to study the evolution of successive mesocyclones produced by a single supercell storm, that is, cyclic mesocyclogenesis. Not all supercells, simulated or observed, exhibit this behavior, and few previous papers in the literature mention it. As a first step toward identifying and understanding the conditions needed to produce cyclic redevelopments within supercell updrafts, this paper examines the effect on cyclic mesocyclogenesis of variations in model physical and computational parameters. Specified changes in grid spacing, numerical diffusion, microphysics options, and the coefficient of surface friction are found to alter, in some cases dramatically, the number and duration of simulated mesocyclone cycles. For example, a decrease from 2.0 to 0.5 km in horizontal grid spacing transforms a nearly perfectly steady, noncycling supercell into one that exhibits three distinct mesocyclone cycles during the same time period. Decreasing the minimum vertical grid spacing at the ground tends to speed up the cycling process, while increasing it has the opposite effect. Ice microphysics is shown to cut short the initial cycling, while both simple surface friction and increased numerical diffusion tend to slow it down. Combining competing effects (i.e., ice microphysics with friction) tends to bring the simulation back to the evolution found in the control case. Explanations for these results are offered in the context of nonlinear feedbacks associated with the cycling process. In addition, the implications of these findings in our understanding of storm behavior as well as in the context of storm-scale numerical weather prediction are discussed.
    publisherAmerican Meteorological Society
    titleThe Sensitivity of Numerically Simulated Cyclic Mesocyclogenesis to Variations in Model Physical and Computational Parameters
    typeJournal Paper
    journal volume130
    journal issue11
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2
    journal fristpage2671
    journal lastpage2691
    treeMonthly Weather Review:;2002:;volume( 130 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian