YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Time-Split versus Process-Split Coupling of Parameterizations and Dynamical Core

    Source: Monthly Weather Review:;2002:;volume( 130 ):;issue: 008::page 2024
    Author:
    Williamson, David L.
    DOI: 10.1175/1520-0493(2002)130<2024:TSVPSC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Simulations are compared to determine the effect of the details of the coupling of the parameterization suite with the dynamical core on the simulated climate. Simulations based on time-split and process-split couplings are compared to a simulation with the original version of the NCAR Community Climate Model?3 (CCM3), which is a mixture of the two approaches. In the process-split coupling, the two components are based on the same state and their tendencies are added to produce the updated state. In the time-split coupling, the two components are calculated sequentially, each based on the state produced by the other. Overall the differences between simulations produced with the various coupling strategies are relatively small. Thus, with the time step used in the CCM3, the different time truncation errors introduced by the different coupling strategies have less effect on simulations than other arbitrary aspects of the model design. This does not imply that the time truncation errors are insignificant, just that they are similar in the cases examined here. There are, however, regions where the differences are statistically significant. The differences in the thermal balance are analyzed in these regions. The most notable differences occur between the time-split case and CCM3 over regions of Antarctica. In summer, although the temperature difference near the surface is modest, the balance of terms in the two cases is very different, with a difference in sign in the sensible heat flux between the two cases. In winter, the parameterization terms have a very strong grid-scale structure associated with parameterized clouds forming predominantly at a single grid level. The dynamics is unable to respond with a grid-scale structure. This draws into question whether the vertical resolution is adequate to properly model the physical processes.
    • Download: (1.170Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Time-Split versus Process-Split Coupling of Parameterizations and Dynamical Core

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205051
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorWilliamson, David L.
    date accessioned2017-06-09T16:14:32Z
    date available2017-06-09T16:14:32Z
    date copyright2002/08/01
    date issued2002
    identifier issn0027-0644
    identifier otherams-63988.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205051
    description abstractSimulations are compared to determine the effect of the details of the coupling of the parameterization suite with the dynamical core on the simulated climate. Simulations based on time-split and process-split couplings are compared to a simulation with the original version of the NCAR Community Climate Model?3 (CCM3), which is a mixture of the two approaches. In the process-split coupling, the two components are based on the same state and their tendencies are added to produce the updated state. In the time-split coupling, the two components are calculated sequentially, each based on the state produced by the other. Overall the differences between simulations produced with the various coupling strategies are relatively small. Thus, with the time step used in the CCM3, the different time truncation errors introduced by the different coupling strategies have less effect on simulations than other arbitrary aspects of the model design. This does not imply that the time truncation errors are insignificant, just that they are similar in the cases examined here. There are, however, regions where the differences are statistically significant. The differences in the thermal balance are analyzed in these regions. The most notable differences occur between the time-split case and CCM3 over regions of Antarctica. In summer, although the temperature difference near the surface is modest, the balance of terms in the two cases is very different, with a difference in sign in the sensible heat flux between the two cases. In winter, the parameterization terms have a very strong grid-scale structure associated with parameterized clouds forming predominantly at a single grid level. The dynamics is unable to respond with a grid-scale structure. This draws into question whether the vertical resolution is adequate to properly model the physical processes.
    publisherAmerican Meteorological Society
    titleTime-Split versus Process-Split Coupling of Parameterizations and Dynamical Core
    typeJournal Paper
    journal volume130
    journal issue8
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2002)130<2024:TSVPSC>2.0.CO;2
    journal fristpage2024
    journal lastpage2041
    treeMonthly Weather Review:;2002:;volume( 130 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian