YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Using Improved Background-Error Covariances from an Ensemble Kalman Filter for Adaptive Observations

    Source: Monthly Weather Review:;2002:;volume( 130 ):;issue: 006::page 1552
    Author:
    Hamill, Thomas M.
    ,
    Snyder, Chris
    DOI: 10.1175/1520-0493(2002)130<1552:UIBECF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A method for determining adaptive observation locations is demonstrated. This method is based on optimal estimation (Kalman filter) theory; it determines the observation location that will maximize the expected improvement, which can be measured in terms of the expected reduction in analysis or forecast variance. This technique requires an accurate model for background error statistics that vary both in space and in time. Here, these covariances are generated using an ensemble Kalman filter assimilation scheme. A variant is also developed that can estimate the analysis improvement in data assimilation schemes where background error statistics are less accurate. This approach is demonstrated using a quasigeostrophic channel model under perfect-model assumptions. The algorithm is applied here to find the supplemental rawinsonde location to add to a regular network of rawinsondes that will reduce analysis errors the most. The observation network is configured in this experiment so there is a data void in the western third of the domain. One-hundred-member ensembles from three data assimilation schemes are tested as input to the target selection procedure, two variants of the standard ensemble Kalman filter and a third perturbed observation (3DVAR) ensemble. The algorithm is shown to find large differences in the expected variance reduction depending on the observation location, the flow of the day, and the ensemble used in the adaptive observation algorithm. When using the two variants of the ensemble Kalman filter, the algorithm defined consistently similar adaptive locations to each other, and assimilation of the adaptive observation typically reduced analysis errors significantly. When the 3DVAR ensemble was used, the algorithm picked very different observation locations and the analyses were not improved as much. The amount of improvement from assimilating a supplemental adaptive observation instead of a fixed observation in the middle of the void depended on whether the observation was assimilated sporadically or during every analysis cycle. For sporadic assimilation, the adaptive observation provided a dramatic improvement relative to the supplemental fixed observation. When an adaptive observation was regularly assimilated every cycle, the improvement was smaller. For the sporadic assimilation of an adaptive observation, targeting based simply on the maximum spread in background forecasts provided similar target locations and similar analysis improvements to those generated with the full algorithm. The improvement from the regular assimilation of an adaptive observation based on the spread algorithm was no larger than when observations from a fixed target in the middle of the void were regularly assimilated.
    • Download: (1.056Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Using Improved Background-Error Covariances from an Ensemble Kalman Filter for Adaptive Observations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205020
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHamill, Thomas M.
    contributor authorSnyder, Chris
    date accessioned2017-06-09T16:14:27Z
    date available2017-06-09T16:14:27Z
    date copyright2002/06/01
    date issued2002
    identifier issn0027-0644
    identifier otherams-63960.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205020
    description abstractA method for determining adaptive observation locations is demonstrated. This method is based on optimal estimation (Kalman filter) theory; it determines the observation location that will maximize the expected improvement, which can be measured in terms of the expected reduction in analysis or forecast variance. This technique requires an accurate model for background error statistics that vary both in space and in time. Here, these covariances are generated using an ensemble Kalman filter assimilation scheme. A variant is also developed that can estimate the analysis improvement in data assimilation schemes where background error statistics are less accurate. This approach is demonstrated using a quasigeostrophic channel model under perfect-model assumptions. The algorithm is applied here to find the supplemental rawinsonde location to add to a regular network of rawinsondes that will reduce analysis errors the most. The observation network is configured in this experiment so there is a data void in the western third of the domain. One-hundred-member ensembles from three data assimilation schemes are tested as input to the target selection procedure, two variants of the standard ensemble Kalman filter and a third perturbed observation (3DVAR) ensemble. The algorithm is shown to find large differences in the expected variance reduction depending on the observation location, the flow of the day, and the ensemble used in the adaptive observation algorithm. When using the two variants of the ensemble Kalman filter, the algorithm defined consistently similar adaptive locations to each other, and assimilation of the adaptive observation typically reduced analysis errors significantly. When the 3DVAR ensemble was used, the algorithm picked very different observation locations and the analyses were not improved as much. The amount of improvement from assimilating a supplemental adaptive observation instead of a fixed observation in the middle of the void depended on whether the observation was assimilated sporadically or during every analysis cycle. For sporadic assimilation, the adaptive observation provided a dramatic improvement relative to the supplemental fixed observation. When an adaptive observation was regularly assimilated every cycle, the improvement was smaller. For the sporadic assimilation of an adaptive observation, targeting based simply on the maximum spread in background forecasts provided similar target locations and similar analysis improvements to those generated with the full algorithm. The improvement from the regular assimilation of an adaptive observation based on the spread algorithm was no larger than when observations from a fixed target in the middle of the void were regularly assimilated.
    publisherAmerican Meteorological Society
    titleUsing Improved Background-Error Covariances from an Ensemble Kalman Filter for Adaptive Observations
    typeJournal Paper
    journal volume130
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2002)130<1552:UIBECF>2.0.CO;2
    journal fristpage1552
    journal lastpage1572
    treeMonthly Weather Review:;2002:;volume( 130 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian