YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Retrieval of Model Initial Fields from Single-Doppler Observations of a Supercell Thunderstorm. Part II: Thermodynamic Retrieval and Numerical Prediction

    Source: Monthly Weather Review:;2002:;volume( 130 ):;issue: 003::page 454
    Author:
    Weygandt, Stephen S.
    ,
    Shapiro, Alan
    ,
    Droegemeier, Kelvin K.
    DOI: 10.1175/1520-0493(2002)130<0454:ROMIFF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In this two-part study, a single-Doppler parameter retrieval technique is developed and applied to a real-data case to provide model initial conditions for a short-range prediction of a supercell thunderstorm. The technique consists of the sequential application of a single-Doppler velocity retrieval (SDVR), followed by a variational velocity adjustment, a thermodynamic retrieval, and a moisture specification step. In Part I, the SDVR procedure is described and results from its application to a supercell thunderstorm are presented. In Part II, results from the thermodynamic retrieval and the numerical model prediction for this same case are presented. For comparison, results from parallel sets of experiments using dual-Doppler-derived winds and winds obtained from the simplified velocity retrieval described in Part I are also shown. Following the SDVR, the retrieved wind fields (available only within the storm volume) are blended with a base-state background field obtained from a proximity sounding. The blended fields are then variationally adjusted to preserve anelastic mass conservation and the observed radial velocity. A Gal-Chen type thermodynamic retrieval procedure is then applied to the adjusted wind fields. For all experiments (full retrieval, simplified retrieval, and dual Doppler), the resultant perturbation pressure and potential temperature fields agree qualitatively with expectations for a deep-convective storm. An analysis of the magnitude of the various terms in the vertical momentum equation for both the full retrieval and dual-Doppler experiments indicates a reasonable agreement with predictions from linear theory. In addition, the perturbation pressure and vorticity fields for both the full retrieval and dual-Doppler experiments are in reasonable agreement with linear theory predictions for deep convection in sheared flow. Following a simple moisture specification step, short-range numerical predictions are initiated for both retrieval experiments and the dual-Doppler experiment. In the full single-Doppler retrieval and dual-Doppler cases, the general storm evolution and deviant storm motion are reasonably well predicted for a period of about 35 minutes. In contrast, the storm initialized using the simplified wind retrieval decays too rapidly, indicating that the additional information obtained by the full wind retrieval (primarily low-level polar vorticity) is vital to the success of the numerical prediction. Sensitivity experiments using the initial fields from the full retrieval indicate that the predicted storm evolution is strongly dependent on the initial moisture fields. Overall, the numerical prediction results suggest at least some degree of short-term predictability for this storm and provide an impetus for continued development of single-Doppler retrieval procedures.
    • Download: (1.121Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Retrieval of Model Initial Fields from Single-Doppler Observations of a Supercell Thunderstorm. Part II: Thermodynamic Retrieval and Numerical Prediction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204947
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorWeygandt, Stephen S.
    contributor authorShapiro, Alan
    contributor authorDroegemeier, Kelvin K.
    date accessioned2017-06-09T16:14:12Z
    date available2017-06-09T16:14:12Z
    date copyright2002/03/01
    date issued2002
    identifier issn0027-0644
    identifier otherams-63894.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204947
    description abstractIn this two-part study, a single-Doppler parameter retrieval technique is developed and applied to a real-data case to provide model initial conditions for a short-range prediction of a supercell thunderstorm. The technique consists of the sequential application of a single-Doppler velocity retrieval (SDVR), followed by a variational velocity adjustment, a thermodynamic retrieval, and a moisture specification step. In Part I, the SDVR procedure is described and results from its application to a supercell thunderstorm are presented. In Part II, results from the thermodynamic retrieval and the numerical model prediction for this same case are presented. For comparison, results from parallel sets of experiments using dual-Doppler-derived winds and winds obtained from the simplified velocity retrieval described in Part I are also shown. Following the SDVR, the retrieved wind fields (available only within the storm volume) are blended with a base-state background field obtained from a proximity sounding. The blended fields are then variationally adjusted to preserve anelastic mass conservation and the observed radial velocity. A Gal-Chen type thermodynamic retrieval procedure is then applied to the adjusted wind fields. For all experiments (full retrieval, simplified retrieval, and dual Doppler), the resultant perturbation pressure and potential temperature fields agree qualitatively with expectations for a deep-convective storm. An analysis of the magnitude of the various terms in the vertical momentum equation for both the full retrieval and dual-Doppler experiments indicates a reasonable agreement with predictions from linear theory. In addition, the perturbation pressure and vorticity fields for both the full retrieval and dual-Doppler experiments are in reasonable agreement with linear theory predictions for deep convection in sheared flow. Following a simple moisture specification step, short-range numerical predictions are initiated for both retrieval experiments and the dual-Doppler experiment. In the full single-Doppler retrieval and dual-Doppler cases, the general storm evolution and deviant storm motion are reasonably well predicted for a period of about 35 minutes. In contrast, the storm initialized using the simplified wind retrieval decays too rapidly, indicating that the additional information obtained by the full wind retrieval (primarily low-level polar vorticity) is vital to the success of the numerical prediction. Sensitivity experiments using the initial fields from the full retrieval indicate that the predicted storm evolution is strongly dependent on the initial moisture fields. Overall, the numerical prediction results suggest at least some degree of short-term predictability for this storm and provide an impetus for continued development of single-Doppler retrieval procedures.
    publisherAmerican Meteorological Society
    titleRetrieval of Model Initial Fields from Single-Doppler Observations of a Supercell Thunderstorm. Part II: Thermodynamic Retrieval and Numerical Prediction
    typeJournal Paper
    journal volume130
    journal issue3
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2002)130<0454:ROMIFF>2.0.CO;2
    journal fristpage454
    journal lastpage476
    treeMonthly Weather Review:;2002:;volume( 130 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian