YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Multiscale Numerical Study of Hurricane Andrew (1992). Part III: Dynamically Induced Vertical Motion

    Source: Monthly Weather Review:;2000:;volume( 128 ):;issue: 011::page 3772
    Author:
    Zhang, Da-Lin
    ,
    Liu, Yubao
    ,
    Yau, M. K.
    DOI: 10.1175/1520-0493(2001)129<3772:AMNSOH>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In this study, the vertical force balance in the inner-core region is examined, through the analysis of vertical momentum budgets, using a high-resolution, explicit simulation of Hurricane Andrew (1992). Three-dimensional buoyancy- and dynamically induced perturbation pressures are then obtained to gain insight into the processes leading to the subsidence warming in the eye and the vertical lifting in the eyewall in the absence of positive buoyancy. It is found from the force balance budgets that vertical acceleration in the eyewall is a small difference among the perturbation pressure gradient force (PGF), buoyancy, and water loading. The azimuthally averaged eyewall convection is found to be conditionally stable but slantwise unstable with little positive buoyancy. It is the PGF that is responsible for the upward acceleration of high-?e air in the eyewall. It is found that the vertical motion and acceleration in the eyewall are highly asymmetric and closely related to the azimuthal distribution of radial flows in conjunction with large thermal and moisture contrasts across the eyewall. For example, the radially incoming air aloft is cool and dry and tends to suppress updrafts or induce downdrafts. On the other hand, the outgoing flows are positively buoyant and tend to ascend in the eyewall unless evaporative cooling dominates. It is also found that the water loading effect has to be included into the hydrostatic equation in estimating the pressure or height field in the eyewall. The perturbation pressure inversions show that a large portion of surface perturbation pressures is caused by the moist-adiabatic warming in the eyewall and the subsidence warming in the eye. However, the associated buoyancy-induced PGF is mostly offset by the buoyancy force, and their net effect is similar in magnitude but opposite in sign to the dynamically induced PGF. Of importance is that the dynamically induced PGF points downward in the eye to account for the maintenance of the general descent. But it points upward in the outer portion of the eyewall, particularly in the north semicircle, to facilitate the lifting of high-?e air in the lower troposphere. Furthermore, this dynamic force is dominated by the radial shear of tangential winds. Based on this finding, a new theoretical explanation, different from previously reported, is advanced for the relationship among the subsidence warming in the eye, and the rotation and vertical wind shear in the eyewall.
    • Download: (587.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Multiscale Numerical Study of Hurricane Andrew (1992). Part III: Dynamically Induced Vertical Motion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204898
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorZhang, Da-Lin
    contributor authorLiu, Yubao
    contributor authorYau, M. K.
    date accessioned2017-06-09T16:14:06Z
    date available2017-06-09T16:14:06Z
    date copyright2000/11/01
    date issued2000
    identifier issn0027-0644
    identifier otherams-63850.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204898
    description abstractIn this study, the vertical force balance in the inner-core region is examined, through the analysis of vertical momentum budgets, using a high-resolution, explicit simulation of Hurricane Andrew (1992). Three-dimensional buoyancy- and dynamically induced perturbation pressures are then obtained to gain insight into the processes leading to the subsidence warming in the eye and the vertical lifting in the eyewall in the absence of positive buoyancy. It is found from the force balance budgets that vertical acceleration in the eyewall is a small difference among the perturbation pressure gradient force (PGF), buoyancy, and water loading. The azimuthally averaged eyewall convection is found to be conditionally stable but slantwise unstable with little positive buoyancy. It is the PGF that is responsible for the upward acceleration of high-?e air in the eyewall. It is found that the vertical motion and acceleration in the eyewall are highly asymmetric and closely related to the azimuthal distribution of radial flows in conjunction with large thermal and moisture contrasts across the eyewall. For example, the radially incoming air aloft is cool and dry and tends to suppress updrafts or induce downdrafts. On the other hand, the outgoing flows are positively buoyant and tend to ascend in the eyewall unless evaporative cooling dominates. It is also found that the water loading effect has to be included into the hydrostatic equation in estimating the pressure or height field in the eyewall. The perturbation pressure inversions show that a large portion of surface perturbation pressures is caused by the moist-adiabatic warming in the eyewall and the subsidence warming in the eye. However, the associated buoyancy-induced PGF is mostly offset by the buoyancy force, and their net effect is similar in magnitude but opposite in sign to the dynamically induced PGF. Of importance is that the dynamically induced PGF points downward in the eye to account for the maintenance of the general descent. But it points upward in the outer portion of the eyewall, particularly in the north semicircle, to facilitate the lifting of high-?e air in the lower troposphere. Furthermore, this dynamic force is dominated by the radial shear of tangential winds. Based on this finding, a new theoretical explanation, different from previously reported, is advanced for the relationship among the subsidence warming in the eye, and the rotation and vertical wind shear in the eyewall.
    publisherAmerican Meteorological Society
    titleA Multiscale Numerical Study of Hurricane Andrew (1992). Part III: Dynamically Induced Vertical Motion
    typeJournal Paper
    journal volume128
    journal issue11
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2001)129<3772:AMNSOH>2.0.CO;2
    journal fristpage3772
    journal lastpage3788
    treeMonthly Weather Review:;2000:;volume( 128 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian