YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of Typhoon Gladys (1994) and Its Interaction with Taiwan Terrain Using the GFDL Hurricane Model

    Source: Monthly Weather Review:;2001:;volume( 129 ):;issue: 006::page 1533
    Author:
    Wu, Chun-Chieh
    DOI: 10.1175/1520-0493(2001)129<1533:NSOTGA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Numerical integrations using the Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model were performed to study the evolution of Typhoon Gladys (1994) and its interaction with the Taiwan terrain. Consistent with most previous studies, the Taiwan topography results in the deceleration of Gladys?s translation speed and southward deviation as it approaches Taiwan. On the other hand, Gladys accelerates northwestward while passing Taiwan, which is likely to be related to the moist processes, and differs from the track pattern in the dry model of Lin et al. Although the GFDL hurricane model forecast underestimates Gladys?s intensity, the model can capture the evolution of Gladys?s intensity, especially its weakening during landfall, which is primarily due to the cutoff of the water vapor supply in the boundary layer as Gladys approached the Taiwan terrain. Other mesoscale phenomena, including the pattern of heavy precipitation and the formation of secondary lows, are well simulated by the model, though their locations are somewhat different from those observed. Detailed analyses indicate that the surface low pressure center to the east of the Central Mountain Range (CMR) is induced by the downslope adiabatic warming (foehn) associated with the circulation of Gladys. The quasi-stationary secondary low to the west of the CMR is mainly induced by the environmental easterly flow over the CMR, while the downslope adiabatic warming associated with the circulation of Gladys acts to enhance it as Gladys is close to Taiwan. The potential vorticity budget analysis indicates that the condensational heating plays a major role in the potential vorticity evolution around the storm, while the surface frictional dissipation of the potential vorticity becomes more significant as Gladys is over the Taiwan terrain. Finally, the experiment with a larger and stronger initial typhoon vortex indicates that different initial specification of a typhoon vortex can result in a different track pattern and thus leads to a totally different typhoon?topography interaction, suggesting the importance of typhoon initialization for storm prediction near Taiwan.
    • Download: (1.405Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of Typhoon Gladys (1994) and Its Interaction with Taiwan Terrain Using the GFDL Hurricane Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204784
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorWu, Chun-Chieh
    date accessioned2017-06-09T16:13:43Z
    date available2017-06-09T16:13:43Z
    date copyright2001/06/01
    date issued2001
    identifier issn0027-0644
    identifier otherams-63747.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204784
    description abstractNumerical integrations using the Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model were performed to study the evolution of Typhoon Gladys (1994) and its interaction with the Taiwan terrain. Consistent with most previous studies, the Taiwan topography results in the deceleration of Gladys?s translation speed and southward deviation as it approaches Taiwan. On the other hand, Gladys accelerates northwestward while passing Taiwan, which is likely to be related to the moist processes, and differs from the track pattern in the dry model of Lin et al. Although the GFDL hurricane model forecast underestimates Gladys?s intensity, the model can capture the evolution of Gladys?s intensity, especially its weakening during landfall, which is primarily due to the cutoff of the water vapor supply in the boundary layer as Gladys approached the Taiwan terrain. Other mesoscale phenomena, including the pattern of heavy precipitation and the formation of secondary lows, are well simulated by the model, though their locations are somewhat different from those observed. Detailed analyses indicate that the surface low pressure center to the east of the Central Mountain Range (CMR) is induced by the downslope adiabatic warming (foehn) associated with the circulation of Gladys. The quasi-stationary secondary low to the west of the CMR is mainly induced by the environmental easterly flow over the CMR, while the downslope adiabatic warming associated with the circulation of Gladys acts to enhance it as Gladys is close to Taiwan. The potential vorticity budget analysis indicates that the condensational heating plays a major role in the potential vorticity evolution around the storm, while the surface frictional dissipation of the potential vorticity becomes more significant as Gladys is over the Taiwan terrain. Finally, the experiment with a larger and stronger initial typhoon vortex indicates that different initial specification of a typhoon vortex can result in a different track pattern and thus leads to a totally different typhoon?topography interaction, suggesting the importance of typhoon initialization for storm prediction near Taiwan.
    publisherAmerican Meteorological Society
    titleNumerical Simulation of Typhoon Gladys (1994) and Its Interaction with Taiwan Terrain Using the GFDL Hurricane Model
    typeJournal Paper
    journal volume129
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2001)129<1533:NSOTGA>2.0.CO;2
    journal fristpage1533
    journal lastpage1549
    treeMonthly Weather Review:;2001:;volume( 129 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian