YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Turbulent Surface Flux Parameterizations for the Stable Surface Layer over Halley, Antarctica

    Source: Monthly Weather Review:;2001:;volume( 129 ):;issue: 001::page 26
    Author:
    Cassano, John J.
    ,
    Parish, Thomas R.
    ,
    King, John C.
    DOI: 10.1175/1520-0493(2001)129<0026:EOTSFP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Calculated surface fluxes from seven surface layer parameterizations are verified against 45 months of observations from Halley, Antarctica, with a temporal resolution of 1 h. The surface layer parameterizations are taken from widely used numerical models including the National Center for Atmospheric Research (NCAR) Community Climate models CCM2 and CCM3, the U.K. Met. Office Unified Climate Model, and the fifth-generation Pennsylvania State University?NCAR Mesoscale Model (MM5). The observations include measurements of the mean wind speed and temperature inversion strength and direct measurements of the turbulent fluxes of heat and momentum. A comparison of the calculated and observed fluxes is conducted for conditions in which the surface layer is stably stratified. Based on these comparisons it is found that the simulated friction velocity values are adequate (although slightly larger than the observed turbulent fluxes) under all but the highest bulk Richardson number conditions (greatest static stability). In contrast the magnitude of the calculated sensible heat flux is frequently less than that of the observed sensible heat flux. The use of a larger scalar roughness length for heat compared to that for momentum is found to remove this bias in the calculated sensible heat fluxes. The correlation between the observed and calculated fluxes of heat and momentum is acceptable for the lower bulk Richardson number regimes, but is near zero for the high bulk Richardson number regime. The correlation between the calculated and observed fluxes is in general better for the momentum flux than for the sensible heat flux. The bias in the calculated sensible heat flux could have significant implications for numerical simulations in which the flow is driven by surface processes, and may pose problems for climate-scale simulations. The impact that errors of the observed magnitude have on simulated katabatic winds is explored with a series of two-dimensional numerical simulations using MM5. Inferences about the relevance of these findings for climate simulations are also addressed.
    • Download: (326.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Turbulent Surface Flux Parameterizations for the Stable Surface Layer over Halley, Antarctica

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204686
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorCassano, John J.
    contributor authorParish, Thomas R.
    contributor authorKing, John C.
    date accessioned2017-06-09T16:13:28Z
    date available2017-06-09T16:13:28Z
    date copyright2001/01/01
    date issued2001
    identifier issn0027-0644
    identifier otherams-63659.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204686
    description abstractCalculated surface fluxes from seven surface layer parameterizations are verified against 45 months of observations from Halley, Antarctica, with a temporal resolution of 1 h. The surface layer parameterizations are taken from widely used numerical models including the National Center for Atmospheric Research (NCAR) Community Climate models CCM2 and CCM3, the U.K. Met. Office Unified Climate Model, and the fifth-generation Pennsylvania State University?NCAR Mesoscale Model (MM5). The observations include measurements of the mean wind speed and temperature inversion strength and direct measurements of the turbulent fluxes of heat and momentum. A comparison of the calculated and observed fluxes is conducted for conditions in which the surface layer is stably stratified. Based on these comparisons it is found that the simulated friction velocity values are adequate (although slightly larger than the observed turbulent fluxes) under all but the highest bulk Richardson number conditions (greatest static stability). In contrast the magnitude of the calculated sensible heat flux is frequently less than that of the observed sensible heat flux. The use of a larger scalar roughness length for heat compared to that for momentum is found to remove this bias in the calculated sensible heat fluxes. The correlation between the observed and calculated fluxes of heat and momentum is acceptable for the lower bulk Richardson number regimes, but is near zero for the high bulk Richardson number regime. The correlation between the calculated and observed fluxes is in general better for the momentum flux than for the sensible heat flux. The bias in the calculated sensible heat flux could have significant implications for numerical simulations in which the flow is driven by surface processes, and may pose problems for climate-scale simulations. The impact that errors of the observed magnitude have on simulated katabatic winds is explored with a series of two-dimensional numerical simulations using MM5. Inferences about the relevance of these findings for climate simulations are also addressed.
    publisherAmerican Meteorological Society
    titleEvaluation of Turbulent Surface Flux Parameterizations for the Stable Surface Layer over Halley, Antarctica
    typeJournal Paper
    journal volume129
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2001)129<0026:EOTSFP>2.0.CO;2
    journal fristpage26
    journal lastpage46
    treeMonthly Weather Review:;2001:;volume( 129 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian