YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of Transitions in Boundary Layer Convective Structures in a Lake-Effect Snow Event

    Source: Monthly Weather Review:;2000:;volume( 128 ):;issue: 009::page 3283
    Author:
    Cooper, Kevin A.
    ,
    Hjelmfelt, Mark R.
    ,
    Derickson, Russell G.
    ,
    Kristovich, David A. R.
    ,
    Laird, Neil F.
    DOI: 10.1175/1520-0493(2000)128<3283:NSOTIB>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Numerical simulations are used to study transitions between boundary layer rolls and more cellular convective structures observed during a lake-effect snow event over Lake Michigan on 17 December 1983. Weak lake-effect nonroll convection was observed near the eastern (downwind) shore preceding passage of a secondary cold front. After frontal passage horizontal wind speeds in the convective boundary layer increased, with subsequent development of linear convective patterns. Thereafter the convective pattern became more three-dimensional as low-level wind speeds decreased. Little directional shear was observed in any of the wind profiles. Numerical simulations with the Advanced Regional Prediction System model were initialized with an upwind sounding and radar-derived wind profiles corresponding to each of the three convective structure regimes. Model-derived reflectivity fields were in good agreement with the observed regimes. These simulations differed primarily in the initial wind speed profiles, and suggest that wind speed and shear in the lower boundary layer are critical in determining the linearity of convection. Simulation with an upwind-overlake wind profile, with strong low-level winds, produced the most linear model reflectivity structure. Fluxes and measures of shear-to-buoyancy ratio for this case were comparable to observations. Model sensitivity tests were conducted to determine the importance of low-level wind speed and speed shear in determining the linearity of convection. Results are consistent with trends expected from ratios of buoyancy to shear (but not proposed numerical threshold values). Eliminating all directional shear from the initial wind profile for the most linear case did not reduce the degree of linearity, thus showing that directional shear is not a requirement for rolls in lake-effect convection. Elimination of clouds (principally latent heating) reduced the vertical velocities by about 50%. It was found that variations in wind speed shear below 200-m height played a major role in determining the degree of linearity of the convection.
    • Download: (463.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of Transitions in Boundary Layer Convective Structures in a Lake-Effect Snow Event

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204633
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorCooper, Kevin A.
    contributor authorHjelmfelt, Mark R.
    contributor authorDerickson, Russell G.
    contributor authorKristovich, David A. R.
    contributor authorLaird, Neil F.
    date accessioned2017-06-09T16:13:21Z
    date available2017-06-09T16:13:21Z
    date copyright2000/09/01
    date issued2000
    identifier issn0027-0644
    identifier otherams-63611.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204633
    description abstractNumerical simulations are used to study transitions between boundary layer rolls and more cellular convective structures observed during a lake-effect snow event over Lake Michigan on 17 December 1983. Weak lake-effect nonroll convection was observed near the eastern (downwind) shore preceding passage of a secondary cold front. After frontal passage horizontal wind speeds in the convective boundary layer increased, with subsequent development of linear convective patterns. Thereafter the convective pattern became more three-dimensional as low-level wind speeds decreased. Little directional shear was observed in any of the wind profiles. Numerical simulations with the Advanced Regional Prediction System model were initialized with an upwind sounding and radar-derived wind profiles corresponding to each of the three convective structure regimes. Model-derived reflectivity fields were in good agreement with the observed regimes. These simulations differed primarily in the initial wind speed profiles, and suggest that wind speed and shear in the lower boundary layer are critical in determining the linearity of convection. Simulation with an upwind-overlake wind profile, with strong low-level winds, produced the most linear model reflectivity structure. Fluxes and measures of shear-to-buoyancy ratio for this case were comparable to observations. Model sensitivity tests were conducted to determine the importance of low-level wind speed and speed shear in determining the linearity of convection. Results are consistent with trends expected from ratios of buoyancy to shear (but not proposed numerical threshold values). Eliminating all directional shear from the initial wind profile for the most linear case did not reduce the degree of linearity, thus showing that directional shear is not a requirement for rolls in lake-effect convection. Elimination of clouds (principally latent heating) reduced the vertical velocities by about 50%. It was found that variations in wind speed shear below 200-m height played a major role in determining the degree of linearity of the convection.
    publisherAmerican Meteorological Society
    titleNumerical Simulation of Transitions in Boundary Layer Convective Structures in a Lake-Effect Snow Event
    typeJournal Paper
    journal volume128
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2000)128<3283:NSOTIB>2.0.CO;2
    journal fristpage3283
    journal lastpage3295
    treeMonthly Weather Review:;2000:;volume( 128 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian