YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data Assimilation in the Presence of Forecast Bias: The GEOS Moisture Analysis

    Source: Monthly Weather Review:;2000:;volume( 128 ):;issue: 009::page 3268
    Author:
    Dee, Dick P.
    ,
    Todling, Ricardo
    DOI: 10.1175/1520-0493(2000)128<3268:DAITPO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The authors describe the application of the unbiased sequential analysis algorithm developed by Dee and da Silva to the Goddard Earth Observing System moisture analysis. The algorithm estimates the slowly varying, systematic component of model error from rawinsonde observations and adjusts the first-guess moisture field accordingly. Results of two seasonal data assimilation cycles show that moisture analysis bias is almost completely eliminated in all observed regions. The improved analyses cause a sizable reduction in the 6-h forecast bias and a marginal improvement in the error standard deviations.
    • Download: (475.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data Assimilation in the Presence of Forecast Bias: The GEOS Moisture Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204632
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorDee, Dick P.
    contributor authorTodling, Ricardo
    date accessioned2017-06-09T16:13:21Z
    date available2017-06-09T16:13:21Z
    date copyright2000/09/01
    date issued2000
    identifier issn0027-0644
    identifier otherams-63610.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204632
    description abstractThe authors describe the application of the unbiased sequential analysis algorithm developed by Dee and da Silva to the Goddard Earth Observing System moisture analysis. The algorithm estimates the slowly varying, systematic component of model error from rawinsonde observations and adjusts the first-guess moisture field accordingly. Results of two seasonal data assimilation cycles show that moisture analysis bias is almost completely eliminated in all observed regions. The improved analyses cause a sizable reduction in the 6-h forecast bias and a marginal improvement in the error standard deviations.
    publisherAmerican Meteorological Society
    titleData Assimilation in the Presence of Forecast Bias: The GEOS Moisture Analysis
    typeJournal Paper
    journal volume128
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2000)128<3268:DAITPO>2.0.CO;2
    journal fristpage3268
    journal lastpage3282
    treeMonthly Weather Review:;2000:;volume( 128 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian