YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Identification of Dynamical Processes at the Tropopause during the Decay of a Cutoff Low Using High-Resolution Airborne Lidar Ozone Measurements

    Source: Monthly Weather Review:;2000:;volume( 128 ):;issue: 009::page 3252
    Author:
    Ravetta, F.
    ,
    Ancellet, G.
    DOI: 10.1175/1520-0493(2000)128<3252:IODPAT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In June 1996, an airborne ozone lidar was successfully used to observe the decay of a cutoff low over southern Europe. This weather system was tracked during several days and sampled with an 8-km horizontal resolution. Most of the measurements took place in the 4?12-km altitude range and ozone-rich layers with a vertical thickness often less than 500 m were seen. Ozone vertical cross sections were obtained at the edges of the cutoff low or in frontal regions next to it. Using complementary data it is shown that these bidimensional cross sections characterize the ozone spatial field well. Two main features of the ozone distribution are large variability of the ozone tropopause and the presence of numerous ozone-rich layers within the troposphere. This paper focuses on the first feature. Observed ozone tropopauses compare well with potential vorticity ones derived from ECMWF analyses. The magnitude of the ozone to potential vorticity ratio also indicates that no significant diabatic mechanism contributes to the ozone transfer from the stratosphere to the troposphere above 325 K. An analysis of the evolution of the ozone vertical gradient in the upper troposphere (80?120 ppb) and lowermost stratosphere (120?200 ppb) is used to illustrate its usefulness as a diagnostic tool of dynamical processes. Large differences are found between air masses near and within the cutoff low. Vertical stretching induced by the PV anomaly cannot completely account for them. Differential advection in frontal regions and convective erosion on the eastern edge of the cutoff low tend to sharpen the vertical ozone gradient. On the contrary, clear sky turbulent mixing tends to smooth it. Convective erosion is also likely to transfer ozone from the stratosphere to the troposphere. This is corroborated by ozone vertical cross sections sampling tropospheric air masses three days after the decay of the cutoff low.
    • Download: (1.015Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Identification of Dynamical Processes at the Tropopause during the Decay of a Cutoff Low Using High-Resolution Airborne Lidar Ozone Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204631
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorRavetta, F.
    contributor authorAncellet, G.
    date accessioned2017-06-09T16:13:21Z
    date available2017-06-09T16:13:21Z
    date copyright2000/09/01
    date issued2000
    identifier issn0027-0644
    identifier otherams-63609.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204631
    description abstractIn June 1996, an airborne ozone lidar was successfully used to observe the decay of a cutoff low over southern Europe. This weather system was tracked during several days and sampled with an 8-km horizontal resolution. Most of the measurements took place in the 4?12-km altitude range and ozone-rich layers with a vertical thickness often less than 500 m were seen. Ozone vertical cross sections were obtained at the edges of the cutoff low or in frontal regions next to it. Using complementary data it is shown that these bidimensional cross sections characterize the ozone spatial field well. Two main features of the ozone distribution are large variability of the ozone tropopause and the presence of numerous ozone-rich layers within the troposphere. This paper focuses on the first feature. Observed ozone tropopauses compare well with potential vorticity ones derived from ECMWF analyses. The magnitude of the ozone to potential vorticity ratio also indicates that no significant diabatic mechanism contributes to the ozone transfer from the stratosphere to the troposphere above 325 K. An analysis of the evolution of the ozone vertical gradient in the upper troposphere (80?120 ppb) and lowermost stratosphere (120?200 ppb) is used to illustrate its usefulness as a diagnostic tool of dynamical processes. Large differences are found between air masses near and within the cutoff low. Vertical stretching induced by the PV anomaly cannot completely account for them. Differential advection in frontal regions and convective erosion on the eastern edge of the cutoff low tend to sharpen the vertical ozone gradient. On the contrary, clear sky turbulent mixing tends to smooth it. Convective erosion is also likely to transfer ozone from the stratosphere to the troposphere. This is corroborated by ozone vertical cross sections sampling tropospheric air masses three days after the decay of the cutoff low.
    publisherAmerican Meteorological Society
    titleIdentification of Dynamical Processes at the Tropopause during the Decay of a Cutoff Low Using High-Resolution Airborne Lidar Ozone Measurements
    typeJournal Paper
    journal volume128
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2000)128<3252:IODPAT>2.0.CO;2
    journal fristpage3252
    journal lastpage3267
    treeMonthly Weather Review:;2000:;volume( 128 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian