YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Response of a Coupled Model of ENSO to Observed Estimates of Stochastic Forcing

    Source: Journal of Climate:;2003:;volume( 016 ):;issue: 017::page 2827
    Author:
    Zavala-Garay, J.
    ,
    Moore, A. M.
    ,
    Perez, C. L.
    ,
    Kleeman, R.
    DOI: 10.1175/1520-0442(2003)016<2827:TROACM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In this work the role that observed intraseasonal atmospheric variability may play in controlling and maintaining ENSO variability is examined. To this end, an asymptotically stable intermediate coupled model of El Niño?Southern Oscillation (ENSO) is forced with observed estimates of stochastic forcing, which are defined to be the part of the atmospheric variability that is apparently independent of the ocean circulation. The stochastic forcing (SF) was estimated from 51 yr (1950?2000) of NCEP?NCAR reanalyses of surface winds and net surface heat flux, 32 yr (1950?81) of reconstructed sea surface temperatures (SST), and 19 yr (1982?2000) of Reynolds SST in the tropical Pacific. The deterministic component of the surface wind and heat flux anomalies that can be linearly related to SST anomalies was estimated using the singular value decomposition of the covariance between the anomaly fields, and was then removed from the atmospheric anomaly fields to recover the stochastic component of the ocean surface forcing. Principal component analysis reveals that the stochastic component has no preferred mode of variability, exhibits decorrelation times of a few days, and has a spectrum that is indistinguishable from red noise. A 19-yr stochastically forced coupled model integration qualitatively shows some similarities with the observed equatorial SST. The robustness of this result is checked by performing different sensitivity experiments. The model mostly exhibits a linear (and nonnormal) response to the low-frequency tail of SF. Using the ideas of generalized linear stability theory, the dynamically important contributions of the SF are isolated, and it is shown that most of the variability in the stochastically forced model solution is produced by stochastically induced Kelvin waves forced in the western and central Pacific. Moreover, the two most dynamically important patterns of stochastic forcing (which account for 71% of the expected variance in the model response) describe eastward propagation of the forcing similar to the MJO. The results of this study support the hypothesis that a significant fraction of ENSO variability may be due to SF, and suggest that a better understanding of the influence of SF on the ocean surface in the western/central Pacific may be required in order to understand the predictability of ENSO.
    • Download: (1.369Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Response of a Coupled Model of ENSO to Observed Estimates of Stochastic Forcing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204523
    Collections
    • Journal of Climate

    Show full item record

    contributor authorZavala-Garay, J.
    contributor authorMoore, A. M.
    contributor authorPerez, C. L.
    contributor authorKleeman, R.
    date accessioned2017-06-09T16:13:03Z
    date available2017-06-09T16:13:03Z
    date copyright2003/09/01
    date issued2003
    identifier issn0894-8755
    identifier otherams-6351.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204523
    description abstractIn this work the role that observed intraseasonal atmospheric variability may play in controlling and maintaining ENSO variability is examined. To this end, an asymptotically stable intermediate coupled model of El Niño?Southern Oscillation (ENSO) is forced with observed estimates of stochastic forcing, which are defined to be the part of the atmospheric variability that is apparently independent of the ocean circulation. The stochastic forcing (SF) was estimated from 51 yr (1950?2000) of NCEP?NCAR reanalyses of surface winds and net surface heat flux, 32 yr (1950?81) of reconstructed sea surface temperatures (SST), and 19 yr (1982?2000) of Reynolds SST in the tropical Pacific. The deterministic component of the surface wind and heat flux anomalies that can be linearly related to SST anomalies was estimated using the singular value decomposition of the covariance between the anomaly fields, and was then removed from the atmospheric anomaly fields to recover the stochastic component of the ocean surface forcing. Principal component analysis reveals that the stochastic component has no preferred mode of variability, exhibits decorrelation times of a few days, and has a spectrum that is indistinguishable from red noise. A 19-yr stochastically forced coupled model integration qualitatively shows some similarities with the observed equatorial SST. The robustness of this result is checked by performing different sensitivity experiments. The model mostly exhibits a linear (and nonnormal) response to the low-frequency tail of SF. Using the ideas of generalized linear stability theory, the dynamically important contributions of the SF are isolated, and it is shown that most of the variability in the stochastically forced model solution is produced by stochastically induced Kelvin waves forced in the western and central Pacific. Moreover, the two most dynamically important patterns of stochastic forcing (which account for 71% of the expected variance in the model response) describe eastward propagation of the forcing similar to the MJO. The results of this study support the hypothesis that a significant fraction of ENSO variability may be due to SF, and suggest that a better understanding of the influence of SF on the ocean surface in the western/central Pacific may be required in order to understand the predictability of ENSO.
    publisherAmerican Meteorological Society
    titleThe Response of a Coupled Model of ENSO to Observed Estimates of Stochastic Forcing
    typeJournal Paper
    journal volume16
    journal issue17
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2003)016<2827:TROACM>2.0.CO;2
    journal fristpage2827
    journal lastpage2842
    treeJournal of Climate:;2003:;volume( 016 ):;issue: 017
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian