YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Intraseasonal Modulation of Summer Precipitation over North America

    Source: Monthly Weather Review:;2000:;volume( 128 ):;issue: 005::page 1490
    Author:
    Mo, Kingtse C.
    DOI: 10.1175/1520-0493(2000)128<1490:IMOSPO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The intraseasonal rainfall variability over North America is examined using singular spectrum analysis (SSA) and composites of outgoing longwave radiation anomalies (OLRAs), 200-hPa divergence and a gridded rainfall dataset over the United States. The evolution of the Arizona and New Mexico (AZNM) monsoon based on composites indicates that rainfall anomalies propagate eastward from the North Pacific through AZNM, the Great Plains, to the eastern United States. During summer, the wet and dry periods of the AZNM monsoon are modulated by an oscillatory mode with a period of 22?25 days (22-day mode). This is also the dominant mode associated with rainfall events over the Great Plains. The influence of the Madden?Julian Oscillation (MJO) on the AZNM monsoon is secondary. The strongest impact of the MJO is on precipitation over Mexico. SSA performed on the 200-hPa divergence and OLRAs averaged over Mexico show only one oscillatory mode with a period of about 36?40 days. The 22?25-day mode also exists in the vertically integrated moisture fluxes over the Great Plains. During the wet periods of the AZNM monsoon, more moisture is transported from both the Gulf of Mexico and the Gulf of California to AZNM. The situation reverses when the oscillation reaches the other phase. The 22-day mode is linked to tropical convection. When rainfall associated with the 22-day mode travels eastward from AZNM to the Great Plains, the OLRA composites show westward propagating waves just north of the equator. When enhanced convection reaches the western Pacific, rainfall diminishes over AZNM. When convection in the western Pacific is suppressed and enhanced convection is located in the central Pacific, rainfall intensifies over AZNM.
    • Download: (1.053Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Intraseasonal Modulation of Summer Precipitation over North America

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204520
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMo, Kingtse C.
    date accessioned2017-06-09T16:13:03Z
    date available2017-06-09T16:13:03Z
    date copyright2000/05/01
    date issued2000
    identifier issn0027-0644
    identifier otherams-63509.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204520
    description abstractThe intraseasonal rainfall variability over North America is examined using singular spectrum analysis (SSA) and composites of outgoing longwave radiation anomalies (OLRAs), 200-hPa divergence and a gridded rainfall dataset over the United States. The evolution of the Arizona and New Mexico (AZNM) monsoon based on composites indicates that rainfall anomalies propagate eastward from the North Pacific through AZNM, the Great Plains, to the eastern United States. During summer, the wet and dry periods of the AZNM monsoon are modulated by an oscillatory mode with a period of 22?25 days (22-day mode). This is also the dominant mode associated with rainfall events over the Great Plains. The influence of the Madden?Julian Oscillation (MJO) on the AZNM monsoon is secondary. The strongest impact of the MJO is on precipitation over Mexico. SSA performed on the 200-hPa divergence and OLRAs averaged over Mexico show only one oscillatory mode with a period of about 36?40 days. The 22?25-day mode also exists in the vertically integrated moisture fluxes over the Great Plains. During the wet periods of the AZNM monsoon, more moisture is transported from both the Gulf of Mexico and the Gulf of California to AZNM. The situation reverses when the oscillation reaches the other phase. The 22-day mode is linked to tropical convection. When rainfall associated with the 22-day mode travels eastward from AZNM to the Great Plains, the OLRA composites show westward propagating waves just north of the equator. When enhanced convection reaches the western Pacific, rainfall diminishes over AZNM. When convection in the western Pacific is suppressed and enhanced convection is located in the central Pacific, rainfall intensifies over AZNM.
    publisherAmerican Meteorological Society
    titleIntraseasonal Modulation of Summer Precipitation over North America
    typeJournal Paper
    journal volume128
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2000)128<1490:IMOSPO>2.0.CO;2
    journal fristpage1490
    journal lastpage1505
    treeMonthly Weather Review:;2000:;volume( 128 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian