YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Multiscale Numerical Study of Hurricane Andrew (1992). Part II: Kinematics and Inner-Core Structures

    Source: Monthly Weather Review:;1999:;volume( 127 ):;issue: 011::page 2597
    Author:
    Liu, Yubao
    ,
    Zhang, Da-Lin
    ,
    Yau, M. K.
    DOI: 10.1175/1520-0493(1999)127<2597:AMNSOH>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Despite considerable research, understanding of the temporal evolution of the inner-core structures of hurricanes is very limited owing to the lack of continuous high-resolution observational data of a storm. In this study, the results of a 72-h explicit simulation of Hurricane Andrew (1992) with a grid size of 6 km are examined to explore the inner-core axisymmetric and asymmetric structures of the storm during its rapid deepening stage. Based on the simulation, a conceptual model of the axisymmetric structures of the storm is proposed. Most of the proposed structures confirm previous observations. The main ingredients include a main inflow (outflow) in the boundary layer (upper troposphere) with little radial flow in between, a divergent slantwise ascent in the eyewall, a penetrative dry downdraft at the inner edge of the eyewall, and a general weak subsiding motion in the eye with typical warming/drying above an inversion located near an altitude of about 2?3 km. The storm deepens as the axes of these features contract. It is found that the inversion divides the eye of the hurricane vertically into two parts, with a deep layer of warm/dry air above and a shallow pool of warm/moist air below. The air aloft descends at an average rate of 5 cm s?1 and has a residency time of several days. In contrast, the warm/moist pool consists of air from the main inflow and penetrative downdrafts, offset somewhat by the air streaming in a returning outflow into the eyewall in the lowest 2 km; it is subject to the influence of the upward heat and moisture fluxes over the underlying warm ocean. The warm/moist pool appears to play an important role in supplying high-?e air for deep convective development in the eyewall. The penetrative downdraft is dry and originates from the return inflow in the upper troposphere, and it is driven by sublimative/evaporative cooling under the influence of the (asymmetric) radial inflow of dry/cold air in the midtroposphere. It penetrates to the bottom of the eye (azimuthally downshear with a width often greater than 100 km) in a radially narrow zone along the slantwise inner edge of the eyewall. It is further shown that all the meteorological fields are highly asymmetric. Whereas the storm-scale flow features a source?sink couplet in the boundary layer and dual gyres aloft, the inner-core structures exhibit alternative radial inflow and outflow and a series of inhomogeneous updrafts and downdrafts. All the fields tilt more or less with height radially outward and azimuthally downshear. Furthermore, pronounced fluctuations of air motion are found in both the eye and the eyewall. Sometimes, a deep layer of upward motion appears at the center of the eye. All these features contribute to the trochoidal oscillation of the storm track and movement. The main steering appears to be located at the midtroposphere (?4.5 km) and the deep-layer mean winds represent well the movement of the hurricane.
    • Download: (954.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Multiscale Numerical Study of Hurricane Andrew (1992). Part II: Kinematics and Inner-Core Structures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204402
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorLiu, Yubao
    contributor authorZhang, Da-Lin
    contributor authorYau, M. K.
    date accessioned2017-06-09T16:12:46Z
    date available2017-06-09T16:12:46Z
    date copyright1999/11/01
    date issued1999
    identifier issn0027-0644
    identifier otherams-63402.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204402
    description abstractDespite considerable research, understanding of the temporal evolution of the inner-core structures of hurricanes is very limited owing to the lack of continuous high-resolution observational data of a storm. In this study, the results of a 72-h explicit simulation of Hurricane Andrew (1992) with a grid size of 6 km are examined to explore the inner-core axisymmetric and asymmetric structures of the storm during its rapid deepening stage. Based on the simulation, a conceptual model of the axisymmetric structures of the storm is proposed. Most of the proposed structures confirm previous observations. The main ingredients include a main inflow (outflow) in the boundary layer (upper troposphere) with little radial flow in between, a divergent slantwise ascent in the eyewall, a penetrative dry downdraft at the inner edge of the eyewall, and a general weak subsiding motion in the eye with typical warming/drying above an inversion located near an altitude of about 2?3 km. The storm deepens as the axes of these features contract. It is found that the inversion divides the eye of the hurricane vertically into two parts, with a deep layer of warm/dry air above and a shallow pool of warm/moist air below. The air aloft descends at an average rate of 5 cm s?1 and has a residency time of several days. In contrast, the warm/moist pool consists of air from the main inflow and penetrative downdrafts, offset somewhat by the air streaming in a returning outflow into the eyewall in the lowest 2 km; it is subject to the influence of the upward heat and moisture fluxes over the underlying warm ocean. The warm/moist pool appears to play an important role in supplying high-?e air for deep convective development in the eyewall. The penetrative downdraft is dry and originates from the return inflow in the upper troposphere, and it is driven by sublimative/evaporative cooling under the influence of the (asymmetric) radial inflow of dry/cold air in the midtroposphere. It penetrates to the bottom of the eye (azimuthally downshear with a width often greater than 100 km) in a radially narrow zone along the slantwise inner edge of the eyewall. It is further shown that all the meteorological fields are highly asymmetric. Whereas the storm-scale flow features a source?sink couplet in the boundary layer and dual gyres aloft, the inner-core structures exhibit alternative radial inflow and outflow and a series of inhomogeneous updrafts and downdrafts. All the fields tilt more or less with height radially outward and azimuthally downshear. Furthermore, pronounced fluctuations of air motion are found in both the eye and the eyewall. Sometimes, a deep layer of upward motion appears at the center of the eye. All these features contribute to the trochoidal oscillation of the storm track and movement. The main steering appears to be located at the midtroposphere (?4.5 km) and the deep-layer mean winds represent well the movement of the hurricane.
    publisherAmerican Meteorological Society
    titleA Multiscale Numerical Study of Hurricane Andrew (1992). Part II: Kinematics and Inner-Core Structures
    typeJournal Paper
    journal volume127
    journal issue11
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1999)127<2597:AMNSOH>2.0.CO;2
    journal fristpage2597
    journal lastpage2616
    treeMonthly Weather Review:;1999:;volume( 127 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian