YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data Assimilation via Error Subspace Statistical Estimation.

    Source: Monthly Weather Review:;1999:;volume( 127 ):;issue: 007::page 1408
    Author:
    Lermusiaux, P. F. J.
    DOI: 10.1175/1520-0493(1999)127<1408:DAVESS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Identical twin experiments are utilized to assess and exemplify the capabilities of error subspace statistical estimation (ESSE). The experiments consists of nonlinear, primitive equation?based, idealized Middle Atlantic Bight shelfbreak front simulations. Qualitative and quantitative comparisons with an optimal interpolation (OI) scheme are made. Essential components of ESSE are illustrated. The evolution of the error subspace, in agreement with the initial conditions, dynamics, and data properties, is analyzed. The three-dimensional multivariate minimum variance melding in the error subspace is compared to the OI melding. Several advantages and properties of ESSE are discussed and evaluated. The continuous singular value decomposition of the nonlinearly evolving variations of variability and the possibilities of ESSE for dominant process analysis are illustrated and emphasized.
    • Download: (1.321Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data Assimilation via Error Subspace Statistical Estimation.

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204310
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorLermusiaux, P. F. J.
    date accessioned2017-06-09T16:12:27Z
    date available2017-06-09T16:12:27Z
    date copyright1999/07/01
    date issued1999
    identifier issn0027-0644
    identifier otherams-63320.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204310
    description abstractIdentical twin experiments are utilized to assess and exemplify the capabilities of error subspace statistical estimation (ESSE). The experiments consists of nonlinear, primitive equation?based, idealized Middle Atlantic Bight shelfbreak front simulations. Qualitative and quantitative comparisons with an optimal interpolation (OI) scheme are made. Essential components of ESSE are illustrated. The evolution of the error subspace, in agreement with the initial conditions, dynamics, and data properties, is analyzed. The three-dimensional multivariate minimum variance melding in the error subspace is compared to the OI melding. Several advantages and properties of ESSE are discussed and evaluated. The continuous singular value decomposition of the nonlinearly evolving variations of variability and the possibilities of ESSE for dominant process analysis are illustrated and emphasized.
    publisherAmerican Meteorological Society
    titleData Assimilation via Error Subspace Statistical Estimation.
    typeJournal Paper
    journal volume127
    journal issue7
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1999)127<1408:DAVESS>2.0.CO;2
    journal fristpage1408
    journal lastpage1432
    treeMonthly Weather Review:;1999:;volume( 127 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian