YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Global Isopycnal OGCM: Validations Using Observed Upper-Ocean Variabilities during 1992–93

    Source: Monthly Weather Review:;1999:;volume( 127 ):;issue: 005::page 706
    Author:
    Hu, Dingming
    ,
    Chao, Yi
    DOI: 10.1175/1520-0493(1999)127<0706:AGIOVU>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In this study, a global isopycnal ocean model (GIM) is described and used for a simulation of variabilities of the global upper ocean during 1992?93. The GIM simulations are compared and validated with both the available observations and simulations with the Geophysical Fluid Dynamics Laboratory Modular Ocean Model (MOM). The observations include sea surface height from TOPEX/Poseidon (T/P), sea surface temperature (SST) from weekly National Centers for Environmental Prediction analysis, and vertical temperature profiles from gridded expandable bathythermographs (XBTs) data. The major differences between the GIM and MOM used in this study are the vertical coordinates, a Kraus?Turner mixed layer, and a tracer-transport velocity associated with an isopycnal-depth diffusion. Otherwise, the two models are formulated in the same parameter space, model configuration, and boundary conditions. The effects of these differences in model formulation on the model simulations are investigated. Due to the difference in the orientation of interior flow and mixing, SST and the thermocline stratification in the eastern equatorial Pacific in GIM are more sensitive to the wind-driven upwelling than they are in MOM. In GIM there is no effective means to transfer heat between the upwelling cold water and the surrounding warm water since subsurface flow and mixing predominantly occur along isopycnic layers. As a result, the SST tends to be cold and the front tends to be sharp compared with the observations in the wind-driven upwelling region. The sharp front could potentially cause numerical instability in GIM. Thus, a large isopycnal-depth diffusivity has to be used to maintain the model stability since the isopycnal-depth diffusion is the most effective way to reduce the steep slope of isopycnals and the strength of the front associated with the cold upwelling in GIM. But the large isopycnal-depth diffusion results in excessive smoothing in the meridional isotherm doming in the equatorial and tropical thermocline. The trade-off between the numerical instability and the excessive isopycnal smoothing points to the necessity of improvement in the isopycnal-depth diffusion. Sea level variabilities during 1992?93 simulated with both GIM and MOM are in good agreement with T/P observations. However, MOM poorly simulates the vertical distribution of the seasonal temperature anomalies in the upper ocean (the baroclinic component of the sea level variability) during 1992?93. Due to the lack of a realistic surface mixed layer, the MOM-simulated temperature profiles have a sharp subsurface gradient, which is not evident in both the GIM simulation and the XBT observation. As a result, the region below the subsurface gradient is almost insulated from the influence of the seasonal temperature variation. The Kraus?Turner mixed layer used in GIM helps to improve the model-simulated seasonal variations of the upper-ocean temperature and the background sea level variability. Implications of deficiencies in both GIM and MOM on the altimetric sea level data assimilation and transient tracer simulations are discussed.
    • Download: (465.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Global Isopycnal OGCM: Validations Using Observed Upper-Ocean Variabilities during 1992–93

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204261
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHu, Dingming
    contributor authorChao, Yi
    date accessioned2017-06-09T16:12:21Z
    date available2017-06-09T16:12:21Z
    date copyright1999/05/01
    date issued1999
    identifier issn0027-0644
    identifier otherams-63276.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204261
    description abstractIn this study, a global isopycnal ocean model (GIM) is described and used for a simulation of variabilities of the global upper ocean during 1992?93. The GIM simulations are compared and validated with both the available observations and simulations with the Geophysical Fluid Dynamics Laboratory Modular Ocean Model (MOM). The observations include sea surface height from TOPEX/Poseidon (T/P), sea surface temperature (SST) from weekly National Centers for Environmental Prediction analysis, and vertical temperature profiles from gridded expandable bathythermographs (XBTs) data. The major differences between the GIM and MOM used in this study are the vertical coordinates, a Kraus?Turner mixed layer, and a tracer-transport velocity associated with an isopycnal-depth diffusion. Otherwise, the two models are formulated in the same parameter space, model configuration, and boundary conditions. The effects of these differences in model formulation on the model simulations are investigated. Due to the difference in the orientation of interior flow and mixing, SST and the thermocline stratification in the eastern equatorial Pacific in GIM are more sensitive to the wind-driven upwelling than they are in MOM. In GIM there is no effective means to transfer heat between the upwelling cold water and the surrounding warm water since subsurface flow and mixing predominantly occur along isopycnic layers. As a result, the SST tends to be cold and the front tends to be sharp compared with the observations in the wind-driven upwelling region. The sharp front could potentially cause numerical instability in GIM. Thus, a large isopycnal-depth diffusivity has to be used to maintain the model stability since the isopycnal-depth diffusion is the most effective way to reduce the steep slope of isopycnals and the strength of the front associated with the cold upwelling in GIM. But the large isopycnal-depth diffusion results in excessive smoothing in the meridional isotherm doming in the equatorial and tropical thermocline. The trade-off between the numerical instability and the excessive isopycnal smoothing points to the necessity of improvement in the isopycnal-depth diffusion. Sea level variabilities during 1992?93 simulated with both GIM and MOM are in good agreement with T/P observations. However, MOM poorly simulates the vertical distribution of the seasonal temperature anomalies in the upper ocean (the baroclinic component of the sea level variability) during 1992?93. Due to the lack of a realistic surface mixed layer, the MOM-simulated temperature profiles have a sharp subsurface gradient, which is not evident in both the GIM simulation and the XBT observation. As a result, the region below the subsurface gradient is almost insulated from the influence of the seasonal temperature variation. The Kraus?Turner mixed layer used in GIM helps to improve the model-simulated seasonal variations of the upper-ocean temperature and the background sea level variability. Implications of deficiencies in both GIM and MOM on the altimetric sea level data assimilation and transient tracer simulations are discussed.
    publisherAmerican Meteorological Society
    titleA Global Isopycnal OGCM: Validations Using Observed Upper-Ocean Variabilities during 1992–93
    typeJournal Paper
    journal volume127
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1999)127<0706:AGIOVU>2.0.CO;2
    journal fristpage706
    journal lastpage725
    treeMonthly Weather Review:;1999:;volume( 127 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian