YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Intraseasonal Oscillation in the Indian Summer Monsoon Simulated by Global and Nested Regional Climate Models

    Source: Monthly Weather Review:;1998:;volume( 126 ):;issue: 012::page 3124
    Author:
    Bhaskaran, B.
    ,
    Murphy, J. M.
    ,
    Jones, R. G.
    DOI: 10.1175/1520-0493(1998)126<3124:IOITIS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Simulations of the intraseasonal oscillation (ISO) in the Indian summer monsoon by a general circulation model (GCM) and a nested regional climate model (RCM) are described. The ISO is the leading mode of subseasonal variability in both models. It is shown to be associated with circulation and precipitation anomalies that propagate northward from the equatorial Indian Ocean to the foothills of the Himalayas on the 30?50-day timescale. The spatial structure, timescale, and propagation characteristics of the simulated ISO are found to be similar to those of the leading observed intraseasonal mode. In particular, both of the simulated versions and the observed version all involve periodic deepening and filling of the monsoon trough resulting from northward propagation of troughs and ridges from the equatorial region. Some differences do occur, however: the GCM version of the ISO is too zonally symmetric and the ISO is too strong in both models. During the positive phase of the ISO (i.e., when the ISO acts to enhance the monsoon trough), composite low-level circulation anomalies in the monsoon trough region are found to be somewhat weaker in the RCM than in the GCM because the RCM signal is obscured to a greater degree by noise associated with other modes of variability. In the GCM, large precipitation anomalies are found to be associated with the positive and negative phases of the ISO in many areas, particularly at the latitudes of the monsoon trough. However, the use of a fine-resolution nested RCM leads to the identification of important spatial detail not present in the GCM distributions. This is particularly true in mountainous regions, most notably in the foothills of the Himalayas: here the RCM simulates a strong precipitation signal, which appears to represent an orographic component of the response to circulation anomalies associated with the ISO, whereas this precipitation signal is absent in the GCM. The use of a nested RCM also allows the phase relationship between the oscillations in the two models to be studied. The relationship is found to be close in most years, suggesting that the regional ISO in the RCM is modulated by the driving GCM circulation via the lateral boundary forcing on the 30?50-day timescale. Several examples are also found, however, where the GCM and RCM diverge, showing that the northward-propagating mode can occur independently of any global forcing on the same timescale, in agreement with observational evidence.
    • Download: (439.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Intraseasonal Oscillation in the Indian Summer Monsoon Simulated by Global and Nested Regional Climate Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204193
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorBhaskaran, B.
    contributor authorMurphy, J. M.
    contributor authorJones, R. G.
    date accessioned2017-06-09T16:12:11Z
    date available2017-06-09T16:12:11Z
    date copyright1998/12/01
    date issued1998
    identifier issn0027-0644
    identifier otherams-63214.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204193
    description abstractSimulations of the intraseasonal oscillation (ISO) in the Indian summer monsoon by a general circulation model (GCM) and a nested regional climate model (RCM) are described. The ISO is the leading mode of subseasonal variability in both models. It is shown to be associated with circulation and precipitation anomalies that propagate northward from the equatorial Indian Ocean to the foothills of the Himalayas on the 30?50-day timescale. The spatial structure, timescale, and propagation characteristics of the simulated ISO are found to be similar to those of the leading observed intraseasonal mode. In particular, both of the simulated versions and the observed version all involve periodic deepening and filling of the monsoon trough resulting from northward propagation of troughs and ridges from the equatorial region. Some differences do occur, however: the GCM version of the ISO is too zonally symmetric and the ISO is too strong in both models. During the positive phase of the ISO (i.e., when the ISO acts to enhance the monsoon trough), composite low-level circulation anomalies in the monsoon trough region are found to be somewhat weaker in the RCM than in the GCM because the RCM signal is obscured to a greater degree by noise associated with other modes of variability. In the GCM, large precipitation anomalies are found to be associated with the positive and negative phases of the ISO in many areas, particularly at the latitudes of the monsoon trough. However, the use of a fine-resolution nested RCM leads to the identification of important spatial detail not present in the GCM distributions. This is particularly true in mountainous regions, most notably in the foothills of the Himalayas: here the RCM simulates a strong precipitation signal, which appears to represent an orographic component of the response to circulation anomalies associated with the ISO, whereas this precipitation signal is absent in the GCM. The use of a nested RCM also allows the phase relationship between the oscillations in the two models to be studied. The relationship is found to be close in most years, suggesting that the regional ISO in the RCM is modulated by the driving GCM circulation via the lateral boundary forcing on the 30?50-day timescale. Several examples are also found, however, where the GCM and RCM diverge, showing that the northward-propagating mode can occur independently of any global forcing on the same timescale, in agreement with observational evidence.
    publisherAmerican Meteorological Society
    titleIntraseasonal Oscillation in the Indian Summer Monsoon Simulated by Global and Nested Regional Climate Models
    typeJournal Paper
    journal volume126
    journal issue12
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1998)126<3124:IOITIS>2.0.CO;2
    journal fristpage3124
    journal lastpage3134
    treeMonthly Weather Review:;1998:;volume( 126 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian