YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulations of the 1994 Piedmont Flood: Role of Orography and Moist Processes

    Source: Monthly Weather Review:;1998:;volume( 126 ):;issue: 009::page 2369
    Author:
    Buzzi, Andrea
    ,
    Tartaglione, Nazario
    ,
    Malguzzi, Piero
    DOI: 10.1175/1520-0493(1998)126<2369:NSOTPF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The intense precipitation event that occurred between 3 and 6 November 1994 and caused extensive flooding over Piedmont in northwestern Italy is simulated and tested with respect to various physical aspects, using a meteorological mesoscale model (BOLAM). The period when the most intense rain occurred, mainly covering the second half of 4 and all of 5 November, is examined. A control experiment, starting at 1200 UTC 4 November, simulates the two observed precipitation peaks and captures the magnitude and timing of the most intense precipitation well even at relatively low horizontal resolution (about 30 km). The European Centre for Medium-Range Weather Forecasts analyses are used to provide the initial and boundary conditions. Model output diagnostics and comparison with observations indicate that most of the precipitation is associated with a prefrontal low-level jet, ahead of the cold front, impinging upon the orography of the region (Alps and Apennines). The model simulates a multiple rainband and frontal structure whose evolution determines both intensity and location of the prefrontal warm and moist flow. Almost all of the simulated precipitation over the Alps forms in the middle?low troposphere through forced ascent, whereas part of the secondary maximum, observed over the Apennines, is of convective type. Sensitivity experiments have been conducted to investigate the effects of orography, surface fluxes, and latent heat exchange processes in the atmosphere. The role of the orography is crucial in determining distribution and amount of precipitation, whereas sensible and latent heat fluxes from the Mediterranean Sea (over the period considered) enhanced only the convective precipitation. Distinct dynamical effects, important for the amount and the spatial distribution of precipitation, are found to be associated with warming due to condensation and cooling due to evaporation and melting of precipitation. The latter process seems to be responsible for the simulated formation of rainbands and complex evolution of the cold front over the western Mediterranean. The multiple front life cycle and propagation feeds back on the simulated precipitation distribution, affecting the location of the prefrontal moist flow. Condensation affects the atmospheric effective stratification where the flow impinges on the orography, determining the flow regime (orographic lifting vs blocking and flow around), which, in turn, has an important impact on precipitation.
    • Download: (560.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulations of the 1994 Piedmont Flood: Role of Orography and Moist Processes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204148
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorBuzzi, Andrea
    contributor authorTartaglione, Nazario
    contributor authorMalguzzi, Piero
    date accessioned2017-06-09T16:12:05Z
    date available2017-06-09T16:12:05Z
    date copyright1998/09/01
    date issued1998
    identifier issn0027-0644
    identifier otherams-63174.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204148
    description abstractThe intense precipitation event that occurred between 3 and 6 November 1994 and caused extensive flooding over Piedmont in northwestern Italy is simulated and tested with respect to various physical aspects, using a meteorological mesoscale model (BOLAM). The period when the most intense rain occurred, mainly covering the second half of 4 and all of 5 November, is examined. A control experiment, starting at 1200 UTC 4 November, simulates the two observed precipitation peaks and captures the magnitude and timing of the most intense precipitation well even at relatively low horizontal resolution (about 30 km). The European Centre for Medium-Range Weather Forecasts analyses are used to provide the initial and boundary conditions. Model output diagnostics and comparison with observations indicate that most of the precipitation is associated with a prefrontal low-level jet, ahead of the cold front, impinging upon the orography of the region (Alps and Apennines). The model simulates a multiple rainband and frontal structure whose evolution determines both intensity and location of the prefrontal warm and moist flow. Almost all of the simulated precipitation over the Alps forms in the middle?low troposphere through forced ascent, whereas part of the secondary maximum, observed over the Apennines, is of convective type. Sensitivity experiments have been conducted to investigate the effects of orography, surface fluxes, and latent heat exchange processes in the atmosphere. The role of the orography is crucial in determining distribution and amount of precipitation, whereas sensible and latent heat fluxes from the Mediterranean Sea (over the period considered) enhanced only the convective precipitation. Distinct dynamical effects, important for the amount and the spatial distribution of precipitation, are found to be associated with warming due to condensation and cooling due to evaporation and melting of precipitation. The latter process seems to be responsible for the simulated formation of rainbands and complex evolution of the cold front over the western Mediterranean. The multiple front life cycle and propagation feeds back on the simulated precipitation distribution, affecting the location of the prefrontal moist flow. Condensation affects the atmospheric effective stratification where the flow impinges on the orography, determining the flow regime (orographic lifting vs blocking and flow around), which, in turn, has an important impact on precipitation.
    publisherAmerican Meteorological Society
    titleNumerical Simulations of the 1994 Piedmont Flood: Role of Orography and Moist Processes
    typeJournal Paper
    journal volume126
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1998)126<2369:NSOTPF>2.0.CO;2
    journal fristpage2369
    journal lastpage2383
    treeMonthly Weather Review:;1998:;volume( 126 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian