YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    High-Resolution Simulation of Surface and Turbulent Fluxes during HAPEX-MOBILHY

    Source: Monthly Weather Review:;1998:;volume( 126 ):;issue: 008::page 2234
    Author:
    Bélair, Stéphane
    ,
    Lacarrère, Pierre
    ,
    Noilhan, Joël
    ,
    Masson, Valéry
    ,
    Stein, Joël
    DOI: 10.1175/1520-0493(1998)126<2234:HRSOSA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The newly developed nonhydrostatic model MESO-NH, in which the surface scheme Interactions Soil?Biosphere?Atmosphere has been incorporated, is used in this study to assess the impact of increasing the horizontal resolution from 10 km to 1 km on the simulation of surface and turbulent fluxes for the 16 June 1986 case of HAPEX-MOBILHY, a field experiment that took place in southwestern France. Except for a slight deterioration over the cultivated areas surrounding the Landes forest (caused by an inconsistency between the soil texture fields at 10 and 1 km), the simulation of the surface fluxes of sensible and latent heat is generally improved by the increase of horizontal resolution. The contrast of the sensible heat fluxes between the Landes forest and the surrounding cultures is well captured in both 10-km and 1-km runs, but the spatial variability of these fluxes is better represented in the high-resolution results. An oasis-type effect over the larger clearings of the Landes forest is even produced by the model, as was observed. For the 1-km simulation, the comparison of the turbulent fluxes against observations has to include both the grid-scale fluxes resulting from resolved larger eddies within the well-mixed layer, as well as subgrid-scale (i.e., parameterized) fluxes. (At 10-km resolution, all turbulent fluxes are parameterized.) The greater contributions of the grid-scale component are found over the forest, where the larger eddies are more vigorous due to stronger sensible heat fluxes at the surface. For sensible and latent heat fluxes, the grid-scale component is particularly important in the middle of the mixed layer, whereas for turbulent kinetic energy this component is greater near the bottom and top of the mixed layer. In general, the increase of horizontal resolution does not improve significantly the simulation of the turbulent fluxes. Thus, the use of such an intermediate horizontal resolution (i.e., 1 km), lying between that typically used in large-eddy simulation models (<200 m) and that of mesoscale models (>few kilometers), is questionable, even though this resolution is probably optimal for simulating surface fluxes, since it is roughly the same as the resolution of the soil and vegetation databases.
    • Download: (1.086Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      High-Resolution Simulation of Surface and Turbulent Fluxes during HAPEX-MOBILHY

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204140
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorBélair, Stéphane
    contributor authorLacarrère, Pierre
    contributor authorNoilhan, Joël
    contributor authorMasson, Valéry
    contributor authorStein, Joël
    date accessioned2017-06-09T16:12:04Z
    date available2017-06-09T16:12:04Z
    date copyright1998/08/01
    date issued1998
    identifier issn0027-0644
    identifier otherams-63167.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204140
    description abstractThe newly developed nonhydrostatic model MESO-NH, in which the surface scheme Interactions Soil?Biosphere?Atmosphere has been incorporated, is used in this study to assess the impact of increasing the horizontal resolution from 10 km to 1 km on the simulation of surface and turbulent fluxes for the 16 June 1986 case of HAPEX-MOBILHY, a field experiment that took place in southwestern France. Except for a slight deterioration over the cultivated areas surrounding the Landes forest (caused by an inconsistency between the soil texture fields at 10 and 1 km), the simulation of the surface fluxes of sensible and latent heat is generally improved by the increase of horizontal resolution. The contrast of the sensible heat fluxes between the Landes forest and the surrounding cultures is well captured in both 10-km and 1-km runs, but the spatial variability of these fluxes is better represented in the high-resolution results. An oasis-type effect over the larger clearings of the Landes forest is even produced by the model, as was observed. For the 1-km simulation, the comparison of the turbulent fluxes against observations has to include both the grid-scale fluxes resulting from resolved larger eddies within the well-mixed layer, as well as subgrid-scale (i.e., parameterized) fluxes. (At 10-km resolution, all turbulent fluxes are parameterized.) The greater contributions of the grid-scale component are found over the forest, where the larger eddies are more vigorous due to stronger sensible heat fluxes at the surface. For sensible and latent heat fluxes, the grid-scale component is particularly important in the middle of the mixed layer, whereas for turbulent kinetic energy this component is greater near the bottom and top of the mixed layer. In general, the increase of horizontal resolution does not improve significantly the simulation of the turbulent fluxes. Thus, the use of such an intermediate horizontal resolution (i.e., 1 km), lying between that typically used in large-eddy simulation models (<200 m) and that of mesoscale models (>few kilometers), is questionable, even though this resolution is probably optimal for simulating surface fluxes, since it is roughly the same as the resolution of the soil and vegetation databases.
    publisherAmerican Meteorological Society
    titleHigh-Resolution Simulation of Surface and Turbulent Fluxes during HAPEX-MOBILHY
    typeJournal Paper
    journal volume126
    journal issue8
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1998)126<2234:HRSOSA>2.0.CO;2
    journal fristpage2234
    journal lastpage2253
    treeMonthly Weather Review:;1998:;volume( 126 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian