YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Air–Sea Interaction and the Seasonal Cycle of the Subtropical Anticyclones

    Source: Journal of Climate:;2003:;volume( 016 ):;issue: 012::page 1948
    Author:
    Seager, Richard
    ,
    Murtugudde, Ragu
    ,
    Naik, Naomi
    ,
    Clement, Amy
    ,
    Gordon, Neil
    ,
    Miller, Jennifer
    DOI: 10.1175/1520-0442(2003)016<1948:AIATSC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The causes of the seasonal cycles of the subtropical anticyclones, and the associated zonal asymmetries of sea surface temperature (SST) across the subtropical oceans, are examined. In all basins the cool waters in the east and warm waters in the west are sustained by a mix of atmosphere and ocean processes. When the anticyclones are best developed, during local summer, subsidence and equatorward advection on the eastern flanks of the anticyclones cool SSTs, while poleward flow on the western flanks warms SSTs. During local winter the SST asymmetry across the subtropical North Atlantic and North Pacific is maintained by warm water advection in the western boundary currents that offsets the large extraction of heat by advection of cold, dry air of the continents and by transient eddies. In the Southern Hemisphere ocean processes are equally important in cooling the eastern oceans by upwelling and advection during local winter. Ocean dynamics are important in amplifying the SST asymmetry, as experiments with general circulation models show. This amplification has little impact on the seasonal cycle of the anticyclones in the Northern Hemisphere, strengthens the anticyclones in the Southern Hemisphere, and helps position the anticyclones over the eastern basins in both hemispheres. Experiments with an idealized model are used to suggest that the subtropical anticyclones arise fundamentally as a response to monsoonal heating over land but need further amplification to bring them up to observed strength. The amplification is provided by local air?sea interaction. The SST asymmetry, generated through local air?sea interaction by the weak anticyclones forced by heating over land, stabilizes the atmosphere to deep convection in the east and destabilizes it in the west. Convection spreads from the land regions to the adjacent regions of the western subtropical oceans, and the enhanced zonal asymmetry of atmospheric heating strengthens the subtropical anticyclones.
    • Download: (1.953Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Air–Sea Interaction and the Seasonal Cycle of the Subtropical Anticyclones

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204079
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSeager, Richard
    contributor authorMurtugudde, Ragu
    contributor authorNaik, Naomi
    contributor authorClement, Amy
    contributor authorGordon, Neil
    contributor authorMiller, Jennifer
    date accessioned2017-06-09T16:11:54Z
    date available2017-06-09T16:11:54Z
    date copyright2003/06/01
    date issued2003
    identifier issn0894-8755
    identifier otherams-6311.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204079
    description abstractThe causes of the seasonal cycles of the subtropical anticyclones, and the associated zonal asymmetries of sea surface temperature (SST) across the subtropical oceans, are examined. In all basins the cool waters in the east and warm waters in the west are sustained by a mix of atmosphere and ocean processes. When the anticyclones are best developed, during local summer, subsidence and equatorward advection on the eastern flanks of the anticyclones cool SSTs, while poleward flow on the western flanks warms SSTs. During local winter the SST asymmetry across the subtropical North Atlantic and North Pacific is maintained by warm water advection in the western boundary currents that offsets the large extraction of heat by advection of cold, dry air of the continents and by transient eddies. In the Southern Hemisphere ocean processes are equally important in cooling the eastern oceans by upwelling and advection during local winter. Ocean dynamics are important in amplifying the SST asymmetry, as experiments with general circulation models show. This amplification has little impact on the seasonal cycle of the anticyclones in the Northern Hemisphere, strengthens the anticyclones in the Southern Hemisphere, and helps position the anticyclones over the eastern basins in both hemispheres. Experiments with an idealized model are used to suggest that the subtropical anticyclones arise fundamentally as a response to monsoonal heating over land but need further amplification to bring them up to observed strength. The amplification is provided by local air?sea interaction. The SST asymmetry, generated through local air?sea interaction by the weak anticyclones forced by heating over land, stabilizes the atmosphere to deep convection in the east and destabilizes it in the west. Convection spreads from the land regions to the adjacent regions of the western subtropical oceans, and the enhanced zonal asymmetry of atmospheric heating strengthens the subtropical anticyclones.
    publisherAmerican Meteorological Society
    titleAir–Sea Interaction and the Seasonal Cycle of the Subtropical Anticyclones
    typeJournal Paper
    journal volume16
    journal issue12
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2003)016<1948:AIATSC>2.0.CO;2
    journal fristpage1948
    journal lastpage1966
    treeJournal of Climate:;2003:;volume( 016 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian