YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experiments in Short-Term Precipitation Forecasting Using Artificial Neural Networks

    Source: Monthly Weather Review:;1998:;volume( 126 ):;issue: 002::page 470
    Author:
    Kuligowski, Robert J.
    ,
    Barros, Ana P.
    DOI: 10.1175/1520-0493(1998)126<0470:EISTPF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Accurate, timely, site-specific forecasts of precipitation are important for accurately predicting streamflow and flash floods in small drainage basins. However, presently available numerical weather prediction models do not generally provide forecasts with the accuracy and/or resolution appropriate for this task. A wide variety of approaches to small-scale, short-term precipitation forecasting have been investigated by numerous authors; this paper describes a simple precipitation forecasting model based on artificial neural networks. The model uses the radiosonde-based 700-hPa wind direction and antecedent precipitation data from a rain gauge network to generate short-term (0?6 h) precipitation forecasts for a target location. The performance of the model is illustrated for a gauge in eastern Pennsylvania.
    • Download: (182.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experiments in Short-Term Precipitation Forecasting Using Artificial Neural Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4204019
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorKuligowski, Robert J.
    contributor authorBarros, Ana P.
    date accessioned2017-06-09T16:11:46Z
    date available2017-06-09T16:11:46Z
    date copyright1998/02/01
    date issued1998
    identifier issn0027-0644
    identifier otherams-63058.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4204019
    description abstractAccurate, timely, site-specific forecasts of precipitation are important for accurately predicting streamflow and flash floods in small drainage basins. However, presently available numerical weather prediction models do not generally provide forecasts with the accuracy and/or resolution appropriate for this task. A wide variety of approaches to small-scale, short-term precipitation forecasting have been investigated by numerous authors; this paper describes a simple precipitation forecasting model based on artificial neural networks. The model uses the radiosonde-based 700-hPa wind direction and antecedent precipitation data from a rain gauge network to generate short-term (0?6 h) precipitation forecasts for a target location. The performance of the model is illustrated for a gauge in eastern Pennsylvania.
    publisherAmerican Meteorological Society
    titleExperiments in Short-Term Precipitation Forecasting Using Artificial Neural Networks
    typeJournal Paper
    journal volume126
    journal issue2
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1998)126<0470:EISTPF>2.0.CO;2
    journal fristpage470
    journal lastpage482
    treeMonthly Weather Review:;1998:;volume( 126 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian