YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Observing System Simulation Experiments and Objective Analysis Tests in Support of the Goals of the Atmospheric Radiation Measurement Program

    Source: Monthly Weather Review:;1997:;volume( 125 ):;issue: 010::page 2353
    Author:
    Parsons, David B.
    ,
    Dudhia, Jimy
    DOI: 10.1175/1520-0493(1997)125<2353:OSSEAO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Time continuous data assimilation or four-dimensional data assimilation (FDDA) is a collection of techniques where observations are ingested into a numerical model during the simulation in order to produce a physically balanced estimate of the true state of the atmosphere. Application of FDDA to the mesoalpha and subalpha scales is relatively new. One of many strategies for undertaking FDDA on the mesoscale is to employ Newtonian relaxation on increasingly finer horizontal grids. Encouraging results were found using this technique by Kuo et al. on a 40-km grid and by Stauffer and Seaman in a nested model with a 10-km inner grid. In these studies, the model is nudged toward the observations through adding an extra term(s) based on the difference between observations and the model predictions to the model?s prognostic equation(s). Since the model must retain a balance, this adjustment is spread over relatively large spatial and long temporal scales, and the nudging term is also multiplied by a coefficient that keeps the adjustment relatively small. Despite the positive findings of past studies, a number of questions arise in the application of this technique to fine grids. One area yet to be tested is how nudging will behave on fine grids under conditions with sharp horizontal and temporal gradients. Little improvement or even degradation of the model by the nudging might be expected as the timescale of nudging is relatively slow compared to the rapid evolution of the atmosphere, and spreading the observations out in time and space may not be representative of the actual atmospheric conditions. Other questions include 1) how the behavior of nudging at these scales and in active convection depends on boundary conditions, network density, and areal extent; 2) how the results depend on variations in the nudging coefficients; and 3) how nudging compares to simple objective analysis of the observations. In this study, Newtonian relaxation is used in a moist, full physics, nonhydrostatic mesoscale model to conduct simulations with horizontal resolutions as fine as 5 km in environments with deep convection and in mountainous terrain. Observing system simulation experiments were designed to address the previously mentioned questions. The authors show that nudging on these scales and in these conditions tends not to produce any large degradations but instead leads to improvements in the simulations even with a small number of observing sites. In applying nudging to a limited mesoscale area, the authors found that the results were more favorable if the nudging was undertaken over larger regions, which supports the nested approach used by Stauffer and Seaman. Some negative aspects of nudging were also uncovered with locally high rms errors due to data representativity problems and predictability issues. The accuracy of objective analysis was also explored and discussed in the context of the Atmospheric Radiation Measurement (ARM) Program. In agreement with Mace and Ackerman, the errors associated with objective analysis can be too large for the goals of ARM. However, the authors also found that a method proposed by Mace and Ackerman to detect time periods where significant errors exist in the objective analysis was not valid for this case. Based on this work, the authors propose that for a modest network of observing sites FDDA has a number of advantages over objective analysis.
    • Download: (1015.Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Observing System Simulation Experiments and Objective Analysis Tests in Support of the Goals of the Atmospheric Radiation Measurement Program

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203926
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorParsons, David B.
    contributor authorDudhia, Jimy
    date accessioned2017-06-09T16:11:31Z
    date available2017-06-09T16:11:31Z
    date copyright1997/10/01
    date issued1997
    identifier issn0027-0644
    identifier otherams-62975.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203926
    description abstractTime continuous data assimilation or four-dimensional data assimilation (FDDA) is a collection of techniques where observations are ingested into a numerical model during the simulation in order to produce a physically balanced estimate of the true state of the atmosphere. Application of FDDA to the mesoalpha and subalpha scales is relatively new. One of many strategies for undertaking FDDA on the mesoscale is to employ Newtonian relaxation on increasingly finer horizontal grids. Encouraging results were found using this technique by Kuo et al. on a 40-km grid and by Stauffer and Seaman in a nested model with a 10-km inner grid. In these studies, the model is nudged toward the observations through adding an extra term(s) based on the difference between observations and the model predictions to the model?s prognostic equation(s). Since the model must retain a balance, this adjustment is spread over relatively large spatial and long temporal scales, and the nudging term is also multiplied by a coefficient that keeps the adjustment relatively small. Despite the positive findings of past studies, a number of questions arise in the application of this technique to fine grids. One area yet to be tested is how nudging will behave on fine grids under conditions with sharp horizontal and temporal gradients. Little improvement or even degradation of the model by the nudging might be expected as the timescale of nudging is relatively slow compared to the rapid evolution of the atmosphere, and spreading the observations out in time and space may not be representative of the actual atmospheric conditions. Other questions include 1) how the behavior of nudging at these scales and in active convection depends on boundary conditions, network density, and areal extent; 2) how the results depend on variations in the nudging coefficients; and 3) how nudging compares to simple objective analysis of the observations. In this study, Newtonian relaxation is used in a moist, full physics, nonhydrostatic mesoscale model to conduct simulations with horizontal resolutions as fine as 5 km in environments with deep convection and in mountainous terrain. Observing system simulation experiments were designed to address the previously mentioned questions. The authors show that nudging on these scales and in these conditions tends not to produce any large degradations but instead leads to improvements in the simulations even with a small number of observing sites. In applying nudging to a limited mesoscale area, the authors found that the results were more favorable if the nudging was undertaken over larger regions, which supports the nested approach used by Stauffer and Seaman. Some negative aspects of nudging were also uncovered with locally high rms errors due to data representativity problems and predictability issues. The accuracy of objective analysis was also explored and discussed in the context of the Atmospheric Radiation Measurement (ARM) Program. In agreement with Mace and Ackerman, the errors associated with objective analysis can be too large for the goals of ARM. However, the authors also found that a method proposed by Mace and Ackerman to detect time periods where significant errors exist in the objective analysis was not valid for this case. Based on this work, the authors propose that for a modest network of observing sites FDDA has a number of advantages over objective analysis.
    publisherAmerican Meteorological Society
    titleObserving System Simulation Experiments and Objective Analysis Tests in Support of the Goals of the Atmospheric Radiation Measurement Program
    typeJournal Paper
    journal volume125
    journal issue10
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1997)125<2353:OSSEAO>2.0.CO;2
    journal fristpage2353
    journal lastpage2381
    treeMonthly Weather Review:;1997:;volume( 125 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian