YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Convective Initiation at the Dryline: A Modeling Study

    Source: Monthly Weather Review:;1997:;volume( 125 ):;issue: 006::page 1001
    Author:
    Ziegler, Conrad L.
    ,
    Lee, Tsengdar J.
    ,
    Pielke, Roger A.
    DOI: 10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A nonhydrostatic, three-dimensional version of the Colorado State University Regional Atmospheric Modeling System (CSU-RAMS) is used to deduce the processes responsible for the formation of drylines and the subsequent initiation of deep, moist dryline convection. A range of cumuliform cloud types are explicitly simulated along drylines on 15, 16, and 26 May 1991 in accordance with observations. In the simulations, narrow convergence bands along the dryline provide the lift to initiate deep moist convection. The thermally direct secondary convective boundary layer (CBL) circulations along the dryline are frontogenetic and solenoidally forced. Maximum updrafts reach 5 m s?1 and the bands are 3?9 km wide and 10?100 km or more in length. The updrafts penetrate and are decelerated by the overlying stable air above the CBL, reaching depths of about 2000 m in the cases studied. Moisture convergence along the mesoscale updraft bands destabilizes the local sounding to deep convection, while simultaneously decreasing the CIN to zero where storms subsequently develop. The lapse rates of vapor mixing ratio and potential temperature in the mesoscale updrafts are rather small, indicating that increases of the lifted condensation level (LCL) and level of free convection (LFC) due to mixing following the parcel motion are also small. Simulated convective clouds of all modes, including shallow forced cumulus and storms, develop in regions where the CIN ranges from zero up to the order of the peak kinetic energy of the boundary layer updraft and moisture is sufficiently deep to permit water saturation to develop in the boundary layer. The findings suggest that classic cloud models may not adequately simulate the early development of dryline storms due to their use of thermal bubbles to initiate convection and their assumption of a horizontally homogeneous environment. In contrast, cautious optimism may be warranted in regard to operational numerical prediction of drylines and the threat of attendant deep convection with mesoscale models.
    • Download: (1.583Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Convective Initiation at the Dryline: A Modeling Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203837
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorZiegler, Conrad L.
    contributor authorLee, Tsengdar J.
    contributor authorPielke, Roger A.
    date accessioned2017-06-09T16:11:18Z
    date available2017-06-09T16:11:18Z
    date copyright1997/06/01
    date issued1997
    identifier issn0027-0644
    identifier otherams-62895.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203837
    description abstractA nonhydrostatic, three-dimensional version of the Colorado State University Regional Atmospheric Modeling System (CSU-RAMS) is used to deduce the processes responsible for the formation of drylines and the subsequent initiation of deep, moist dryline convection. A range of cumuliform cloud types are explicitly simulated along drylines on 15, 16, and 26 May 1991 in accordance with observations. In the simulations, narrow convergence bands along the dryline provide the lift to initiate deep moist convection. The thermally direct secondary convective boundary layer (CBL) circulations along the dryline are frontogenetic and solenoidally forced. Maximum updrafts reach 5 m s?1 and the bands are 3?9 km wide and 10?100 km or more in length. The updrafts penetrate and are decelerated by the overlying stable air above the CBL, reaching depths of about 2000 m in the cases studied. Moisture convergence along the mesoscale updraft bands destabilizes the local sounding to deep convection, while simultaneously decreasing the CIN to zero where storms subsequently develop. The lapse rates of vapor mixing ratio and potential temperature in the mesoscale updrafts are rather small, indicating that increases of the lifted condensation level (LCL) and level of free convection (LFC) due to mixing following the parcel motion are also small. Simulated convective clouds of all modes, including shallow forced cumulus and storms, develop in regions where the CIN ranges from zero up to the order of the peak kinetic energy of the boundary layer updraft and moisture is sufficiently deep to permit water saturation to develop in the boundary layer. The findings suggest that classic cloud models may not adequately simulate the early development of dryline storms due to their use of thermal bubbles to initiate convection and their assumption of a horizontally homogeneous environment. In contrast, cautious optimism may be warranted in regard to operational numerical prediction of drylines and the threat of attendant deep convection with mesoscale models.
    publisherAmerican Meteorological Society
    titleConvective Initiation at the Dryline: A Modeling Study
    typeJournal Paper
    journal volume125
    journal issue6
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2
    journal fristpage1001
    journal lastpage1026
    treeMonthly Weather Review:;1997:;volume( 125 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian