YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Frontal Interaction with the Appalachian Mountains. Part I: A Climatology

    Source: Monthly Weather Review:;1996:;volume( 124 ):;issue: 011::page 2453
    Author:
    Schumacher, Philip N.
    ,
    Knight, David J.
    ,
    Bosart, Lance F.
    DOI: 10.1175/1520-0493(1996)124<2453:FIWTAM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A comparison between the climatological structure of retarded and unretarded fronts aligned parallel to the Appalachian Mountains is investigated. With the average height of the Appalachians being 1 km, retarded and unretarded fronts are common occurrences during the cold season. Because of the narrow half-width of 100 km and the 1000-km length of the mountain chain, a comparison to two- and three-dimensional numerical studies can be performed. Of the 142 cases of frontal passages over the Appalachians during the winters between October 1984 and April 1990, over 55% of all cold fronts were retarded by the mountains. Statistical analysis showed that retarded fronts have a stronger cross-front temperature gradient and a weaker cross-front pressure gradient. Composite fields of sea level pressure, 850-, 500-, and 200-mb heights; quasigeostrophic potential vorticity and its advection, and potential height (U/N) were computed for all retarded and unretarded fronts. Unretarded fronts were associated with stronger cyclones, larger potential vorticity anomalies, larger positive potential vorticity advection, and more amplified flow at all levels. There was no significant difference between the potential height fields of the two types of fronts. In addition the average potential height, for both groups of fronts, easily met the criteria for retardation. Rather than depending upon the Froude number of the flow, it is hypothesized that the strength of the synoptic-scale circulations in the middle and upper troposphere primarily determines whether or not a front will be retarded by the Appalachian Mountains.
    • Download: (1.329Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Frontal Interaction with the Appalachian Mountains. Part I: A Climatology

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203740
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorSchumacher, Philip N.
    contributor authorKnight, David J.
    contributor authorBosart, Lance F.
    date accessioned2017-06-09T16:11:03Z
    date available2017-06-09T16:11:03Z
    date copyright1996/11/01
    date issued1996
    identifier issn0027-0644
    identifier otherams-62807.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203740
    description abstractA comparison between the climatological structure of retarded and unretarded fronts aligned parallel to the Appalachian Mountains is investigated. With the average height of the Appalachians being 1 km, retarded and unretarded fronts are common occurrences during the cold season. Because of the narrow half-width of 100 km and the 1000-km length of the mountain chain, a comparison to two- and three-dimensional numerical studies can be performed. Of the 142 cases of frontal passages over the Appalachians during the winters between October 1984 and April 1990, over 55% of all cold fronts were retarded by the mountains. Statistical analysis showed that retarded fronts have a stronger cross-front temperature gradient and a weaker cross-front pressure gradient. Composite fields of sea level pressure, 850-, 500-, and 200-mb heights; quasigeostrophic potential vorticity and its advection, and potential height (U/N) were computed for all retarded and unretarded fronts. Unretarded fronts were associated with stronger cyclones, larger potential vorticity anomalies, larger positive potential vorticity advection, and more amplified flow at all levels. There was no significant difference between the potential height fields of the two types of fronts. In addition the average potential height, for both groups of fronts, easily met the criteria for retardation. Rather than depending upon the Froude number of the flow, it is hypothesized that the strength of the synoptic-scale circulations in the middle and upper troposphere primarily determines whether or not a front will be retarded by the Appalachian Mountains.
    publisherAmerican Meteorological Society
    titleFrontal Interaction with the Appalachian Mountains. Part I: A Climatology
    typeJournal Paper
    journal volume124
    journal issue11
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1996)124<2453:FIWTAM>2.0.CO;2
    journal fristpage2453
    journal lastpage2468
    treeMonthly Weather Review:;1996:;volume( 124 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian