YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Diurnal Cycle of Rainfall and Convective Intensity according to Three Years of TRMM Measurements

    Source: Journal of Climate:;2003:;volume( 016 ):;issue: 010::page 1456
    Author:
    Nesbitt, Stephen W.
    ,
    Zipser, Edward J.
    DOI: 10.1175/1520-0442(2003)016<1456:TDCORA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The Tropical Rainfall Measuring Mission (TRMM) satellite measurements from the precipitation radar and TRMM microwave imager have been combined to yield a comprehensive 3-yr database of precipitation features (PFs) throughout the global Tropics (±36° latitude). The PFs retrieved using this algorithm (which number nearly six million Tropicswide) have been sorted by size and intensity ranging from small shallow features greater than 75 km2 in area to large mesoscale convective systems (MCSs) according to their radar and ice scattering characteristics. This study presents a comprehensive analysis of the diurnal cycle of the observed precipitation features' rainfall amount, precipitation feature frequency, rainfall intensity, convective?stratiform rainfall portioning, and remotely sensed convective intensity, sampled Tropicswide from space. The observations are sorted regionally to examine the stark differences in the diurnal cycle of rainfall and convective intensity over land and ocean areas. Over the oceans, the diurnal cycle of rainfall has small amplitude, with the maximum contribution to rainfall coming from MCSs in the early morning. This increased contribution is due to an increased number of MCSs in the nighttime hours, not increasing MCS areas or conditional rain rates, in agreement with previous works. Rainfall from sub-MCS features over the ocean has little appreciable diurnal cycle of rainfall or convective intensity. Land areas have a much larger rainfall cycle than over the ocean, with a marked minimum in the midmorning hours and a maximum in the afternoon, slowly decreasing through midnight. Non-MCS features have a significant peak in afternoon instantaneous conditional rain rates (the mean rain rate in raining pixels), and convective intensities, which differs from previous studies using rain rates derived from hourly rain gauges. This is attributed to enhancement by afternoon heating. MCSs over land have a convective intensity peak in the late afternoon, however all land regions have MCS rainfall peaks that occur in the late evening through midnight due to their longer life cycle. The diurnal cycle of overland MCS rainfall and convective intensity varies significantly among land regions, attributed to MCS sensitivity to the varying environmental conditions in which they occur.
    • Download: (4.726Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Diurnal Cycle of Rainfall and Convective Intensity according to Three Years of TRMM Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203734
    Collections
    • Journal of Climate

    Show full item record

    contributor authorNesbitt, Stephen W.
    contributor authorZipser, Edward J.
    date accessioned2017-06-09T16:11:02Z
    date available2017-06-09T16:11:02Z
    date copyright2003/05/01
    date issued2003
    identifier issn0894-8755
    identifier otherams-6280.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203734
    description abstractThe Tropical Rainfall Measuring Mission (TRMM) satellite measurements from the precipitation radar and TRMM microwave imager have been combined to yield a comprehensive 3-yr database of precipitation features (PFs) throughout the global Tropics (±36° latitude). The PFs retrieved using this algorithm (which number nearly six million Tropicswide) have been sorted by size and intensity ranging from small shallow features greater than 75 km2 in area to large mesoscale convective systems (MCSs) according to their radar and ice scattering characteristics. This study presents a comprehensive analysis of the diurnal cycle of the observed precipitation features' rainfall amount, precipitation feature frequency, rainfall intensity, convective?stratiform rainfall portioning, and remotely sensed convective intensity, sampled Tropicswide from space. The observations are sorted regionally to examine the stark differences in the diurnal cycle of rainfall and convective intensity over land and ocean areas. Over the oceans, the diurnal cycle of rainfall has small amplitude, with the maximum contribution to rainfall coming from MCSs in the early morning. This increased contribution is due to an increased number of MCSs in the nighttime hours, not increasing MCS areas or conditional rain rates, in agreement with previous works. Rainfall from sub-MCS features over the ocean has little appreciable diurnal cycle of rainfall or convective intensity. Land areas have a much larger rainfall cycle than over the ocean, with a marked minimum in the midmorning hours and a maximum in the afternoon, slowly decreasing through midnight. Non-MCS features have a significant peak in afternoon instantaneous conditional rain rates (the mean rain rate in raining pixels), and convective intensities, which differs from previous studies using rain rates derived from hourly rain gauges. This is attributed to enhancement by afternoon heating. MCSs over land have a convective intensity peak in the late afternoon, however all land regions have MCS rainfall peaks that occur in the late evening through midnight due to their longer life cycle. The diurnal cycle of overland MCS rainfall and convective intensity varies significantly among land regions, attributed to MCS sensitivity to the varying environmental conditions in which they occur.
    publisherAmerican Meteorological Society
    titleThe Diurnal Cycle of Rainfall and Convective Intensity according to Three Years of TRMM Measurements
    typeJournal Paper
    journal volume16
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2003)016<1456:TDCORA>2.0.CO;2
    journal fristpage1456
    journal lastpage1475
    treeJournal of Climate:;2003:;volume( 016 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian