YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Moisture Budget of the Central United States in Spring as Evaluated in the NCEP/NCAR and the NASA/DAO Reanalyses

    Source: Monthly Weather Review:;1996:;volume( 124 ):;issue: 005::page 939
    Author:
    Higgins, R. W.
    ,
    Mo, K. C.
    ,
    Schubert, S. D.
    DOI: 10.1175/1520-0493(1996)124<0939:TMBOTC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The moisture budget of the central United States during May is examined using multiyear (1985?89) assimilated datasets recently produced by NASA/DAO and NCEP/NCAR. Intercomparisons and comparisons with station observations are used to evaluate the limitations of the assimilated products for studies of the atmospheric component of the U.S. hydrologic cycle. Attempts are made to reconcile differences in terms of disparities in the analysis systems. Both reanalyses overestimate daily mean precipitation rates by a factor of almost 2 over the southeastern United States. This is associated with much larger than observed afternoon convective rain and a substantial overestimate of the number of days with precipitation. Both products capture the transition to the much drier conditions over the western United States, though the NCEP/NCAR product extends moderate rain rates too far to the northwest. Over the Great Plains, the reanalyses capture observed synoptic-scale precipitation events quite well, but the variability of the daily mean precipitation is underestimated; this is particularly true for the NASA/DAO analysis, which has difficulty capturing the extreme rain rates. The NCEP/NCAR product shows generally higher correlation's with the observed precipitation, though the fluctuations in the two assimilation products are more similar to each other than they are to the observations. The moisture transport in the reanalyses compares favorably to gridded rawinsonde data though there are some significant regional differences particularly along the Gulf Coast. Examination of the overall moisture budget for the central United States shows that the observations act as a significant local source of moisture, reflecting model bias in the first-guess fields. In both products the analysis increments act to remove water over much of the northern and western part of the country, apparently counteracting excessive evaporation in those regions, especially in the NASA/DAO. Perhaps most disturbing are the substantial differences between the two reanalyses in the moisture divergence fields since these are the most strongly constrained by the observations. Both reanalyses capture the basic temporal and structural characteristics of the Great Plains low-level jet (LLJ) documented in previous observational studies. Composites of the nocturnal fluxes of moisture during LLJ events reveal a horizontally confined region of strong southerly transport to the east of the Rocky Mountains that is sandwiched between well-defined synoptic-scale cyclonic (anticyclonic) circulations to the northwest (southeast). Low-level inflow from the Gulf of Mexico increases by more than 50% over nocturnal mean values in both reanalyses, though the excess inflow is more than 30% stronger in the NCEP/NCAR reanalysis. While both analyses underestimate the nocturnal maximum in precipitation over the Great Plains, the pattern of precipitation anomalies associated with LLJ events compares favorably to observations.
    • Download: (3.811Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Moisture Budget of the Central United States in Spring as Evaluated in the NCEP/NCAR and the NASA/DAO Reanalyses

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203633
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHiggins, R. W.
    contributor authorMo, K. C.
    contributor authorSchubert, S. D.
    date accessioned2017-06-09T16:10:48Z
    date available2017-06-09T16:10:48Z
    date copyright1996/05/01
    date issued1996
    identifier issn0027-0644
    identifier otherams-62711.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203633
    description abstractThe moisture budget of the central United States during May is examined using multiyear (1985?89) assimilated datasets recently produced by NASA/DAO and NCEP/NCAR. Intercomparisons and comparisons with station observations are used to evaluate the limitations of the assimilated products for studies of the atmospheric component of the U.S. hydrologic cycle. Attempts are made to reconcile differences in terms of disparities in the analysis systems. Both reanalyses overestimate daily mean precipitation rates by a factor of almost 2 over the southeastern United States. This is associated with much larger than observed afternoon convective rain and a substantial overestimate of the number of days with precipitation. Both products capture the transition to the much drier conditions over the western United States, though the NCEP/NCAR product extends moderate rain rates too far to the northwest. Over the Great Plains, the reanalyses capture observed synoptic-scale precipitation events quite well, but the variability of the daily mean precipitation is underestimated; this is particularly true for the NASA/DAO analysis, which has difficulty capturing the extreme rain rates. The NCEP/NCAR product shows generally higher correlation's with the observed precipitation, though the fluctuations in the two assimilation products are more similar to each other than they are to the observations. The moisture transport in the reanalyses compares favorably to gridded rawinsonde data though there are some significant regional differences particularly along the Gulf Coast. Examination of the overall moisture budget for the central United States shows that the observations act as a significant local source of moisture, reflecting model bias in the first-guess fields. In both products the analysis increments act to remove water over much of the northern and western part of the country, apparently counteracting excessive evaporation in those regions, especially in the NASA/DAO. Perhaps most disturbing are the substantial differences between the two reanalyses in the moisture divergence fields since these are the most strongly constrained by the observations. Both reanalyses capture the basic temporal and structural characteristics of the Great Plains low-level jet (LLJ) documented in previous observational studies. Composites of the nocturnal fluxes of moisture during LLJ events reveal a horizontally confined region of strong southerly transport to the east of the Rocky Mountains that is sandwiched between well-defined synoptic-scale cyclonic (anticyclonic) circulations to the northwest (southeast). Low-level inflow from the Gulf of Mexico increases by more than 50% over nocturnal mean values in both reanalyses, though the excess inflow is more than 30% stronger in the NCEP/NCAR reanalysis. While both analyses underestimate the nocturnal maximum in precipitation over the Great Plains, the pattern of precipitation anomalies associated with LLJ events compares favorably to observations.
    publisherAmerican Meteorological Society
    titleThe Moisture Budget of the Central United States in Spring as Evaluated in the NCEP/NCAR and the NASA/DAO Reanalyses
    typeJournal Paper
    journal volume124
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1996)124<0939:TMBOTC>2.0.CO;2
    journal fristpage939
    journal lastpage963
    treeMonthly Weather Review:;1996:;volume( 124 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian