YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulations of Shallow Supercell Storms in Landfalling Hurricane Environments

    Source: Monthly Weather Review:;1996:;volume( 124 ):;issue: 003::page 408
    Author:
    McCaul, Eugene W.
    ,
    Weisman, Morris L.
    DOI: 10.1175/1520-0493(1996)124<0408:SOSSSI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Numerical simulations of the convective storms that form in tornado-producing landfalling hurricanes show that shallow supercells are possible, even though buoyancy is limited because ambient lapse rates are close to moist adiabatic. Updrafts generally reach peak intensity at low levels, often around 2 km above the surface. By comparison, a simulated midlatitude supercell typical of the Great Plains of the United States exhibits a pronounced increase in storm size, both horizontally and vertically. At low levels, however, the hurricane-spawned storms may contain updrafts that rival or exceed in intensity those of Great Plains supercells at similar levels. Simulations made using a tornado-proximity sounding from the remnants of Hurricane Danny in 1985 produce a small but intense supercell, a finding consistent with the available observational evidence. Although the amplitude of parcel buoyancy is often small in hurricane environments, its concentration in the strongly sheared lower troposphere promotes the development of perturbation pressure minima comparable to those seen in simulated Great Plains supercells. In a typical simulated hurricane-spawned supercell, the upward dynamic pressure gradient force contributes at least three times as much to the maximum updraft speed as does explicit buoyancy. Tilting and stretching of ambient horizontal vorticity by the strong low-level updrafts promotes production of substantial vertical vorticity aloft in the hurricane-spawned storms. However, the weakness of their surface cold pools tends to restrict surface vorticity development, a fact that may help explain why most hurricane-spawned tornadoes are weaker than their Great Plains counterparts.
    • Download: (1.718Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulations of Shallow Supercell Storms in Landfalling Hurricane Environments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203595
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMcCaul, Eugene W.
    contributor authorWeisman, Morris L.
    date accessioned2017-06-09T16:10:40Z
    date available2017-06-09T16:10:40Z
    date copyright1996/03/01
    date issued1996
    identifier issn0027-0644
    identifier otherams-62677.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203595
    description abstractNumerical simulations of the convective storms that form in tornado-producing landfalling hurricanes show that shallow supercells are possible, even though buoyancy is limited because ambient lapse rates are close to moist adiabatic. Updrafts generally reach peak intensity at low levels, often around 2 km above the surface. By comparison, a simulated midlatitude supercell typical of the Great Plains of the United States exhibits a pronounced increase in storm size, both horizontally and vertically. At low levels, however, the hurricane-spawned storms may contain updrafts that rival or exceed in intensity those of Great Plains supercells at similar levels. Simulations made using a tornado-proximity sounding from the remnants of Hurricane Danny in 1985 produce a small but intense supercell, a finding consistent with the available observational evidence. Although the amplitude of parcel buoyancy is often small in hurricane environments, its concentration in the strongly sheared lower troposphere promotes the development of perturbation pressure minima comparable to those seen in simulated Great Plains supercells. In a typical simulated hurricane-spawned supercell, the upward dynamic pressure gradient force contributes at least three times as much to the maximum updraft speed as does explicit buoyancy. Tilting and stretching of ambient horizontal vorticity by the strong low-level updrafts promotes production of substantial vertical vorticity aloft in the hurricane-spawned storms. However, the weakness of their surface cold pools tends to restrict surface vorticity development, a fact that may help explain why most hurricane-spawned tornadoes are weaker than their Great Plains counterparts.
    publisherAmerican Meteorological Society
    titleSimulations of Shallow Supercell Storms in Landfalling Hurricane Environments
    typeJournal Paper
    journal volume124
    journal issue3
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1996)124<0408:SOSSSI>2.0.CO;2
    journal fristpage408
    journal lastpage429
    treeMonthly Weather Review:;1996:;volume( 124 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian