YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Mesoscale and Microscale Structure of a Severe Ice Pellet Storm

    Source: Monthly Weather Review:;1995:;volume( 123 ):;issue: 011::page 3144
    Author:
    Hanesiak, John M.
    ,
    Stewart, Ronald E.
    DOI: 10.1175/1520-0493(1995)123<3144:TMAMSO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: On 1?2 February 1992 a major storm produced a prolonged period (6 h) of ice pellets over St. John's, Newfoundland. At least two key features contributed to the prolonged duration. First, a subsaturated region within an inversion led to a reduction in the melting rate of particles that eventually meant that they could completely refreeze in the lower subfreezing region. This subsaturated region formed within descending air aloft identified by Doppler radar observations. Second, a cold core of air between the surface and the inversion was critically important for the refreezing of partially melted particles. Results from an airmass transformation model were used to show that the ice pellet duration was extended as a result of air traveling over sea ice as opposed to over the ocean. In addition, this study showed that Doppler radar velocity information may be capable of estimating the base height of the above freezing temperature regime during freezing rain/drizzle. Furthermore, the Doppler velocity information may also be used as a warning for possible freezing rain/drizzle conditions. A conceptual model of this storm has been developed to integrate all of the observations and it was also compared to other storms producing ice pellets. Only one other storm possessed a period of sole ice pellets and it was also the only other storm that exhibited a pronounced subsaturated region within the inversion.
    • Download: (1.554Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Mesoscale and Microscale Structure of a Severe Ice Pellet Storm

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203533
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHanesiak, John M.
    contributor authorStewart, Ronald E.
    date accessioned2017-06-09T16:10:31Z
    date available2017-06-09T16:10:31Z
    date copyright1995/11/01
    date issued1995
    identifier issn0027-0644
    identifier otherams-62621.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203533
    description abstractOn 1?2 February 1992 a major storm produced a prolonged period (6 h) of ice pellets over St. John's, Newfoundland. At least two key features contributed to the prolonged duration. First, a subsaturated region within an inversion led to a reduction in the melting rate of particles that eventually meant that they could completely refreeze in the lower subfreezing region. This subsaturated region formed within descending air aloft identified by Doppler radar observations. Second, a cold core of air between the surface and the inversion was critically important for the refreezing of partially melted particles. Results from an airmass transformation model were used to show that the ice pellet duration was extended as a result of air traveling over sea ice as opposed to over the ocean. In addition, this study showed that Doppler radar velocity information may be capable of estimating the base height of the above freezing temperature regime during freezing rain/drizzle. Furthermore, the Doppler velocity information may also be used as a warning for possible freezing rain/drizzle conditions. A conceptual model of this storm has been developed to integrate all of the observations and it was also compared to other storms producing ice pellets. Only one other storm possessed a period of sole ice pellets and it was also the only other storm that exhibited a pronounced subsaturated region within the inversion.
    publisherAmerican Meteorological Society
    titleThe Mesoscale and Microscale Structure of a Severe Ice Pellet Storm
    typeJournal Paper
    journal volume123
    journal issue11
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1995)123<3144:TMAMSO>2.0.CO;2
    journal fristpage3144
    journal lastpage3162
    treeMonthly Weather Review:;1995:;volume( 123 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian