YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation of Extreme New Zealand Precipitation Events. Part II: Mechanisms of Precipitation Development

    Source: Monthly Weather Review:;1995:;volume( 123 ):;issue: 003::page 755
    Author:
    Katzfey, Jack J.
    DOI: 10.1175/1520-0493(1995)123<0755:SOENZP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The extreme precipitation event that occurred on 27 December 1989 over the South Island of New Zealand was simulated using the DAR hydrostatic mesoscale model nested within the ECMWF analyses. The model simulated nearly half of the peak observed rainfall for this storm (greater than 700 mm) and captured the location and timing of the intense precipitation. The heavy precipitation developed while a deep layer of moist subtropical air along a cold front ascended the high terrain of the South Island. The intense orographic ascent was associated with a low-level jet core with wind speeds of over 20 m s?1 ahead of the cold front. An upper-level trough and jet streak entrance region were also present upstream of the South Island during the event, aiding the ascent over the mountains and deepening the layer of moist air. The air crossing the mountain was nearly saturated throughout the troposphere and had only weak moist vertical stability near the cold front. Almost all of the simulated precipitation formed in the low troposphere through forced ascent, with only minimal convection behind the cold front. Two sensitivity experiments were conducted to investigate the effects of orography and latent heating on the development of precipitation in the simulations. Weak upstream blocking by the orography was present, enhancing the ascent upstream and causing a slight moistening of the midtroposphere. The latent heat, maximized near the surface on the upwind side of the mountain, caused increased upward motion and precipitation over the orography and decreased ascent upstream, tending to dry and stabilize the air there. The latent heat release weakened the blocking effect of the orography and altered the mountain wave through reduced effective dry static stability.
    • Download: (2.762Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation of Extreme New Zealand Precipitation Events. Part II: Mechanisms of Precipitation Development

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203450
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorKatzfey, Jack J.
    date accessioned2017-06-09T16:10:20Z
    date available2017-06-09T16:10:20Z
    date copyright1995/03/01
    date issued1995
    identifier issn0027-0644
    identifier otherams-62546.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203450
    description abstractThe extreme precipitation event that occurred on 27 December 1989 over the South Island of New Zealand was simulated using the DAR hydrostatic mesoscale model nested within the ECMWF analyses. The model simulated nearly half of the peak observed rainfall for this storm (greater than 700 mm) and captured the location and timing of the intense precipitation. The heavy precipitation developed while a deep layer of moist subtropical air along a cold front ascended the high terrain of the South Island. The intense orographic ascent was associated with a low-level jet core with wind speeds of over 20 m s?1 ahead of the cold front. An upper-level trough and jet streak entrance region were also present upstream of the South Island during the event, aiding the ascent over the mountains and deepening the layer of moist air. The air crossing the mountain was nearly saturated throughout the troposphere and had only weak moist vertical stability near the cold front. Almost all of the simulated precipitation formed in the low troposphere through forced ascent, with only minimal convection behind the cold front. Two sensitivity experiments were conducted to investigate the effects of orography and latent heating on the development of precipitation in the simulations. Weak upstream blocking by the orography was present, enhancing the ascent upstream and causing a slight moistening of the midtroposphere. The latent heat, maximized near the surface on the upwind side of the mountain, caused increased upward motion and precipitation over the orography and decreased ascent upstream, tending to dry and stabilize the air there. The latent heat release weakened the blocking effect of the orography and altered the mountain wave through reduced effective dry static stability.
    publisherAmerican Meteorological Society
    titleSimulation of Extreme New Zealand Precipitation Events. Part II: Mechanisms of Precipitation Development
    typeJournal Paper
    journal volume123
    journal issue3
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1995)123<0755:SOENZP>2.0.CO;2
    journal fristpage755
    journal lastpage775
    treeMonthly Weather Review:;1995:;volume( 123 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian