YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    “Horizontal” Reduction of Pressure to Sea Level: Comparison against the NMC's Shuell Method

    Source: Monthly Weather Review:;1995:;volume( 123 ):;issue: 001::page 59
    Author:
    Mesinger, Fedor
    ,
    Treadon, Russell E.
    DOI: 10.1175/1520-0493(1995)123<0059:ROPTSL>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: It is suggested that there are two major problems with the ?standard? methods of reducing pressure to sea level based on the surface temperature or the lowest-layer(s) temperature of a numerical model. The first is that using air temperatures above elevated terrain for reducing pressure to sea level is in conflict with the presumed objective of the reduction. The authors take this to be the derivation of a pressure field appropriate to sea level that to the extent possible maintains the shape of the constant-elevation isobars and reflects the changes in the horizontal of the magnitudes of horizontal pressure gradients, as these exist at the ground surface. The other problem is that evidence is emerging showing that with the increasing realism in the representation of mountains in numerical models the performance of the standard reduction methods is about to deteriorate to the point of becoming unacceptable. Fortunately, as proposed earlier by the first author, an alternative exists that is both simple and consistent with the objective of the reduction as presumed above. It is to replace the downward extrapolation of temperature by the horizontal interpolation of (virtual) temperature where the temperatures are given at the sides of mountains. Performance of the ?horizontal? reduction method is here compared against the so-called Shuell method, which is a conventional part of the U.S. National Meteorological Center's postprocessing packages. This is done by examining the sea level pressure centers of initial conditions and forecasts, at 12-h intervals, of the National Meteorological Center's eta model, as obtained via the Shuell and horizontal reduction methods. The comparison is done for a sample of late summer initial conditions and forecasts verifying at 16 consecutive 0000 and 1200 UTC initial times. Note that the Shuell reduction method was specifically designed to improve upon a standard lapse rate reduction to sea level during the warm season. In terms of the agreement with the analyst-assessed values, the two methods showed an overall comparable performance. The horizontal reduction method performed much better for Mexican heat lows, while the Shuell method was clearly superior in reproducing the analyzed values at high centers over the United States and Canadian highlands. The horizontal reduction method performed somewhat better in depicting the values at the centers of lows over the United States and Canadian mountainous region of the study. As its main benefit, the horizontal reduction method eliminated formidable noise and artifact problems of the Shuell reduction method without resorting to smoothing devices.
    • Download: (1.069Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      “Horizontal” Reduction of Pressure to Sea Level: Comparison against the NMC's Shuell Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203406
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorMesinger, Fedor
    contributor authorTreadon, Russell E.
    date accessioned2017-06-09T16:10:15Z
    date available2017-06-09T16:10:15Z
    date copyright1995/01/01
    date issued1995
    identifier issn0027-0644
    identifier otherams-62506.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203406
    description abstractIt is suggested that there are two major problems with the ?standard? methods of reducing pressure to sea level based on the surface temperature or the lowest-layer(s) temperature of a numerical model. The first is that using air temperatures above elevated terrain for reducing pressure to sea level is in conflict with the presumed objective of the reduction. The authors take this to be the derivation of a pressure field appropriate to sea level that to the extent possible maintains the shape of the constant-elevation isobars and reflects the changes in the horizontal of the magnitudes of horizontal pressure gradients, as these exist at the ground surface. The other problem is that evidence is emerging showing that with the increasing realism in the representation of mountains in numerical models the performance of the standard reduction methods is about to deteriorate to the point of becoming unacceptable. Fortunately, as proposed earlier by the first author, an alternative exists that is both simple and consistent with the objective of the reduction as presumed above. It is to replace the downward extrapolation of temperature by the horizontal interpolation of (virtual) temperature where the temperatures are given at the sides of mountains. Performance of the ?horizontal? reduction method is here compared against the so-called Shuell method, which is a conventional part of the U.S. National Meteorological Center's postprocessing packages. This is done by examining the sea level pressure centers of initial conditions and forecasts, at 12-h intervals, of the National Meteorological Center's eta model, as obtained via the Shuell and horizontal reduction methods. The comparison is done for a sample of late summer initial conditions and forecasts verifying at 16 consecutive 0000 and 1200 UTC initial times. Note that the Shuell reduction method was specifically designed to improve upon a standard lapse rate reduction to sea level during the warm season. In terms of the agreement with the analyst-assessed values, the two methods showed an overall comparable performance. The horizontal reduction method performed much better for Mexican heat lows, while the Shuell method was clearly superior in reproducing the analyzed values at high centers over the United States and Canadian highlands. The horizontal reduction method performed somewhat better in depicting the values at the centers of lows over the United States and Canadian mountainous region of the study. As its main benefit, the horizontal reduction method eliminated formidable noise and artifact problems of the Shuell reduction method without resorting to smoothing devices.
    publisherAmerican Meteorological Society
    title“Horizontal” Reduction of Pressure to Sea Level: Comparison against the NMC's Shuell Method
    typeJournal Paper
    journal volume123
    journal issue1
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1995)123<0059:ROPTSL>2.0.CO;2
    journal fristpage59
    journal lastpage68
    treeMonthly Weather Review:;1995:;volume( 123 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian