YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation of the Northern Summer Monsoon in the ECMWF Model: Sensitivity to Horizontal Resolution

    Source: Monthly Weather Review:;1994:;volume( 122 ):;issue: 011::page 2461
    Author:
    Sperber, Kennetu R.
    ,
    Hameed, Sultan
    ,
    Potter, Gerald L.
    ,
    Boyle, James S.
    DOI: 10.1175/1520-0493(1994)122<2461:SOTNSM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The ability of the ECMWF model (cycle 33) to simulate the Indian and East Asian summer monsoons is evaluated at four different horizontal resolutions: T21, T42, T63, and T1O6. Generally, with respect to the large-scale features of the circulation, the largest differences among the simulations occur at T42 relative to T21. However, on regional scales, important differences among the high-frequency temporal variability serve as a further critical rest of the model's ability to simulate the monsoon. T106 best captures both the spatial and temporal characteristics of the Indian and East Asian monsoons, whereas T42 fails to correctly simulate the sequence and development of synoptic-scale milestones that characterize the monsoon flow. In particular, T106 is superior at simulating the development and migration of the monsoon trough over the Bay of Bengal. In the T42 simulation, the development of the monsoon occurs one month earlier than typically observed. At this time the trough is incorrectly located adjacent to the east coast of India, which results in an underestimate of precipitation over the Burma-Thailand region. This early establishment of the monsoon trough affects the evolution of the East Asian monsoon and yields excessive preseason rainfall over the Mei-yu region. EOF analysis of precipitation over China indicates that T106 best simulates the Mei-yu mode of variability, which is associated with an oscillation of the rainband that gives rise to periods of enhanced rainfall over the Yangtze River valley. The coarse resolution of T21 precludes simulation of the aforementioned regional-scale monsoon flows.
    • Download: (2.933Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation of the Northern Summer Monsoon in the ECMWF Model: Sensitivity to Horizontal Resolution

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203370
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorSperber, Kennetu R.
    contributor authorHameed, Sultan
    contributor authorPotter, Gerald L.
    contributor authorBoyle, James S.
    date accessioned2017-06-09T16:10:10Z
    date available2017-06-09T16:10:10Z
    date copyright1994/11/01
    date issued1994
    identifier issn0027-0644
    identifier otherams-62474.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203370
    description abstractThe ability of the ECMWF model (cycle 33) to simulate the Indian and East Asian summer monsoons is evaluated at four different horizontal resolutions: T21, T42, T63, and T1O6. Generally, with respect to the large-scale features of the circulation, the largest differences among the simulations occur at T42 relative to T21. However, on regional scales, important differences among the high-frequency temporal variability serve as a further critical rest of the model's ability to simulate the monsoon. T106 best captures both the spatial and temporal characteristics of the Indian and East Asian monsoons, whereas T42 fails to correctly simulate the sequence and development of synoptic-scale milestones that characterize the monsoon flow. In particular, T106 is superior at simulating the development and migration of the monsoon trough over the Bay of Bengal. In the T42 simulation, the development of the monsoon occurs one month earlier than typically observed. At this time the trough is incorrectly located adjacent to the east coast of India, which results in an underestimate of precipitation over the Burma-Thailand region. This early establishment of the monsoon trough affects the evolution of the East Asian monsoon and yields excessive preseason rainfall over the Mei-yu region. EOF analysis of precipitation over China indicates that T106 best simulates the Mei-yu mode of variability, which is associated with an oscillation of the rainband that gives rise to periods of enhanced rainfall over the Yangtze River valley. The coarse resolution of T21 precludes simulation of the aforementioned regional-scale monsoon flows.
    publisherAmerican Meteorological Society
    titleSimulation of the Northern Summer Monsoon in the ECMWF Model: Sensitivity to Horizontal Resolution
    typeJournal Paper
    journal volume122
    journal issue11
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1994)122<2461:SOTNSM>2.0.CO;2
    journal fristpage2461
    journal lastpage2481
    treeMonthly Weather Review:;1994:;volume( 122 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian