YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Diagnosis and Correction of Systematic Humidity Error in a Global Numerical Weather Prediction Model

    Source: Monthly Weather Review:;1994:;volume( 122 ):;issue: 011::page 2442
    Author:
    Norquist, Donald C.
    ,
    Chang, Sam S.
    DOI: 10.1175/1520-0493(1994)122<2442:DACOSH>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Accuracy of humidity forecasts has been considered relatively unimportant to much of the operational numerical weather prediction (NWP) community. However, the U.S. Air Force is interested in accurate water vapor and cloud forecasts as end products. It is expected that the NWP community as a whole will become more involved in improving their humidity forecasts as they recognize the important role of accurate water vapor distributions in data assimilation, forecasts of temperature and precipitation, and climate change research. As a modeling community, we need to begin now to identify and rectify the systematic humidity forecast errors that are present in NWP models. This will allow us to take full advantage of the new types of remotely sensed water vapor and cloud measurements that are on the horizon. The research reported in this paper attempts to address this issue in a simple, straightforward manner, using the Phillips Laboratory Global Spectral Model (PL GSM). It was found that significant systematic specific humidity errors exist in the much-used FGGE [First CARP (Global Atmospheric Research Program) Global Experimental] (initialized) analyses. However, when a correction on the analyses was imposed and the PL GSM forecasts rerun, forecast errors similar to the forecast errors generated from the uncorrected analyses were observed. The errors were diagnosed through an evaluation of the tendency terms in the model's specific humidity prognostic equation. The results showed that systematic low-level tropical drying and upper-level global moistening could be attributed to the convective terms and the horizontal and vertical advection terms, respectively. Alternative formulations of the model were identified in an attempt to reduce or eliminate these errors. In general, it was found that the alternative formulations that do not modify the convection parameterization of the model reduced the upper-level moistening, while those that do modify the convection scheme reduced low-level tropical drying but introduced low-level and midlevel moistening in the summer hemisphere extratropics. The authors conclude that the nonconvective modifications could be instituted in the model as is. However, more work is needed on improving the way that convective parameterizations distribute water vapor in the vertical.
    • Download: (1.372Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Diagnosis and Correction of Systematic Humidity Error in a Global Numerical Weather Prediction Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203369
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorNorquist, Donald C.
    contributor authorChang, Sam S.
    date accessioned2017-06-09T16:10:10Z
    date available2017-06-09T16:10:10Z
    date copyright1994/11/01
    date issued1994
    identifier issn0027-0644
    identifier otherams-62473.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203369
    description abstractAccuracy of humidity forecasts has been considered relatively unimportant to much of the operational numerical weather prediction (NWP) community. However, the U.S. Air Force is interested in accurate water vapor and cloud forecasts as end products. It is expected that the NWP community as a whole will become more involved in improving their humidity forecasts as they recognize the important role of accurate water vapor distributions in data assimilation, forecasts of temperature and precipitation, and climate change research. As a modeling community, we need to begin now to identify and rectify the systematic humidity forecast errors that are present in NWP models. This will allow us to take full advantage of the new types of remotely sensed water vapor and cloud measurements that are on the horizon. The research reported in this paper attempts to address this issue in a simple, straightforward manner, using the Phillips Laboratory Global Spectral Model (PL GSM). It was found that significant systematic specific humidity errors exist in the much-used FGGE [First CARP (Global Atmospheric Research Program) Global Experimental] (initialized) analyses. However, when a correction on the analyses was imposed and the PL GSM forecasts rerun, forecast errors similar to the forecast errors generated from the uncorrected analyses were observed. The errors were diagnosed through an evaluation of the tendency terms in the model's specific humidity prognostic equation. The results showed that systematic low-level tropical drying and upper-level global moistening could be attributed to the convective terms and the horizontal and vertical advection terms, respectively. Alternative formulations of the model were identified in an attempt to reduce or eliminate these errors. In general, it was found that the alternative formulations that do not modify the convection parameterization of the model reduced the upper-level moistening, while those that do modify the convection scheme reduced low-level tropical drying but introduced low-level and midlevel moistening in the summer hemisphere extratropics. The authors conclude that the nonconvective modifications could be instituted in the model as is. However, more work is needed on improving the way that convective parameterizations distribute water vapor in the vertical.
    publisherAmerican Meteorological Society
    titleDiagnosis and Correction of Systematic Humidity Error in a Global Numerical Weather Prediction Model
    typeJournal Paper
    journal volume122
    journal issue11
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1994)122<2442:DACOSH>2.0.CO;2
    journal fristpage2442
    journal lastpage2460
    treeMonthly Weather Review:;1994:;volume( 122 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian