YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Comparison between Digital Filtering Initialization and Nonlinear Normal-Mode Initialization in a Data Assimilation System

    Source: Monthly Weather Review:;1994:;volume( 122 ):;issue: 005::page 1001
    Author:
    Huang, Xiang-Yu
    ,
    Cederskov, Annette
    ,
    Källén, Erland
    DOI: 10.1175/1520-0493(1994)122<1001:ACBDFI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The objective of this study is to examine the performance of the adiabatic digital filtering initialization scheme of Lynch and Huang, the diabatic digital filtering initialization scheme of Huang and Lynch, and the diabatic nonlinear normal-mode initialization scheme of Cederskov in a complete data assimilation system. In particular, the authors wish to examine the handling of observations and the changes that the initialization makes to the analysis in an intermittent data assimilation cycle. As a reference the authors use the adiabatic nonlinear normal-mode initialization of Machenhauer, formulated according to Bijlsma and Hafkenscheid, which is the current operational initialization scheme at the, Danish Meteorological Institute. The initialization schemes tested are found to produce a well-balanced model state that is at least as good as that produced by the reference scheme. Furthermore, the changes to the analysis made by the different initialization schemes are similar and the observations are therefore treated similarly with the different schemes. It is thus found that the introduction of a new initialization procedure has no detrimental effect on the data assimilation cycle. On the contrary, the two diabatic schemes reduce the noise level considerably compared to the adiabatic ones albeit at an increased computational cost. Considering the advantages of a diabatic scheme, in particular the future possibility of including cloud properties in the initialization procedure (Huang and Sundqvist), the use of a diabatic scheme seems well justified. The noise reduction is perhaps not the most important aspect as all schemes behave identically in the handling of observations. Instead, the possibility of including satellite-derived cloudiness and precipitation data in the analysis and initialization cycle is a much move important aspect. From this point of view the digital filter has a clear advantage over the normal-mode initialization scheme as all dependent variables of the model are initialized.
    • Download: (1.151Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Comparison between Digital Filtering Initialization and Nonlinear Normal-Mode Initialization in a Data Assimilation System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203266
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHuang, Xiang-Yu
    contributor authorCederskov, Annette
    contributor authorKällén, Erland
    date accessioned2017-06-09T16:09:53Z
    date available2017-06-09T16:09:53Z
    date copyright1994/05/01
    date issued1994
    identifier issn0027-0644
    identifier otherams-62381.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203266
    description abstractThe objective of this study is to examine the performance of the adiabatic digital filtering initialization scheme of Lynch and Huang, the diabatic digital filtering initialization scheme of Huang and Lynch, and the diabatic nonlinear normal-mode initialization scheme of Cederskov in a complete data assimilation system. In particular, the authors wish to examine the handling of observations and the changes that the initialization makes to the analysis in an intermittent data assimilation cycle. As a reference the authors use the adiabatic nonlinear normal-mode initialization of Machenhauer, formulated according to Bijlsma and Hafkenscheid, which is the current operational initialization scheme at the, Danish Meteorological Institute. The initialization schemes tested are found to produce a well-balanced model state that is at least as good as that produced by the reference scheme. Furthermore, the changes to the analysis made by the different initialization schemes are similar and the observations are therefore treated similarly with the different schemes. It is thus found that the introduction of a new initialization procedure has no detrimental effect on the data assimilation cycle. On the contrary, the two diabatic schemes reduce the noise level considerably compared to the adiabatic ones albeit at an increased computational cost. Considering the advantages of a diabatic scheme, in particular the future possibility of including cloud properties in the initialization procedure (Huang and Sundqvist), the use of a diabatic scheme seems well justified. The noise reduction is perhaps not the most important aspect as all schemes behave identically in the handling of observations. Instead, the possibility of including satellite-derived cloudiness and precipitation data in the analysis and initialization cycle is a much move important aspect. From this point of view the digital filter has a clear advantage over the normal-mode initialization scheme as all dependent variables of the model are initialized.
    publisherAmerican Meteorological Society
    titleA Comparison between Digital Filtering Initialization and Nonlinear Normal-Mode Initialization in a Data Assimilation System
    typeJournal Paper
    journal volume122
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1994)122<1001:ACBDFI>2.0.CO;2
    journal fristpage1001
    journal lastpage1015
    treeMonthly Weather Review:;1994:;volume( 122 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian