YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamics of Short-Term Univariate Forecast Error Covariances

    Source: Monthly Weather Review:;1993:;volume( 121 ):;issue: 011::page 3123
    Author:
    Cohn, Stephen E.
    DOI: 10.1175/1520-0493(1993)121<3123:DOSTUF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The covariance equation based on second-order closure for dynamics governed by a general scalar nonlinear partial differential equation (PDE) is studied. If the governing dynamics involve n space dimensions, then the covariance equation is a PDE in 2n space dimensions. Solving this equation for n = 3 is therefore computationally infeasible. This is a hindrance to stochastic-dynamic prediction as well as to novel methods of data assimilation based on the Kalman filter. It is shown that the covariance equation can be solved approximately, to any desired accuracy, by solving instead an auxiliary system of PDEs in just n dimensions. The first of these is a dynamical equation for the variance field. Successive equations describe, to increasingly high order, the dynamics of the shape of either the covariance function or the correlation function for points separated by small distances. The second-order equation, for instance, describes the evolution of the correlation length (turbulent microscale) field. Each auxiliary equation is coupled only to the preceding, lower-order equations if the governing dynamics are hyperbolic, but is weakly coupled to the following equation in the presence of diffusion. Analysis of these equations reveals some of the qualitative behavior of their solutions. It is shown that the variance equation, through nonlinear coupling with the mean equation, describes the nonlinear effect of saturation of variance as well as the internal and external growth of variance. Further, it is shown that, in the presence of model error, the initial correlation field is transient, being damped as the influence of the model error correlation grows, while in the absence of model error the initial correlation is simply advected. There is also a critical correlation length, depending on the internal dynamics and on the model error, toward which the forecast error correlation length generally tends.
    • Download: (1.953Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamics of Short-Term Univariate Forecast Error Covariances

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203174
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorCohn, Stephen E.
    date accessioned2017-06-09T16:09:40Z
    date available2017-06-09T16:09:40Z
    date copyright1993/11/01
    date issued1993
    identifier issn0027-0644
    identifier otherams-62298.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203174
    description abstractThe covariance equation based on second-order closure for dynamics governed by a general scalar nonlinear partial differential equation (PDE) is studied. If the governing dynamics involve n space dimensions, then the covariance equation is a PDE in 2n space dimensions. Solving this equation for n = 3 is therefore computationally infeasible. This is a hindrance to stochastic-dynamic prediction as well as to novel methods of data assimilation based on the Kalman filter. It is shown that the covariance equation can be solved approximately, to any desired accuracy, by solving instead an auxiliary system of PDEs in just n dimensions. The first of these is a dynamical equation for the variance field. Successive equations describe, to increasingly high order, the dynamics of the shape of either the covariance function or the correlation function for points separated by small distances. The second-order equation, for instance, describes the evolution of the correlation length (turbulent microscale) field. Each auxiliary equation is coupled only to the preceding, lower-order equations if the governing dynamics are hyperbolic, but is weakly coupled to the following equation in the presence of diffusion. Analysis of these equations reveals some of the qualitative behavior of their solutions. It is shown that the variance equation, through nonlinear coupling with the mean equation, describes the nonlinear effect of saturation of variance as well as the internal and external growth of variance. Further, it is shown that, in the presence of model error, the initial correlation field is transient, being damped as the influence of the model error correlation grows, while in the absence of model error the initial correlation is simply advected. There is also a critical correlation length, depending on the internal dynamics and on the model error, toward which the forecast error correlation length generally tends.
    publisherAmerican Meteorological Society
    titleDynamics of Short-Term Univariate Forecast Error Covariances
    typeJournal Paper
    journal volume121
    journal issue11
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1993)121<3123:DOSTUF>2.0.CO;2
    journal fristpage3123
    journal lastpage3149
    treeMonthly Weather Review:;1993:;volume( 121 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian