YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Random Errors of Oceanic Monthly Rainfall Derived from SSM/I Using Probability Distribution Functions

    Source: Monthly Weather Review:;1993:;volume( 121 ):;issue: 008::page 2351
    Author:
    Chang, Alfred T. C.
    ,
    Chiu, Long S.
    ,
    Wilheit, Thomas T.
    DOI: 10.1175/1520-0493(1993)121<2351:REOOMR>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Global averages and random errors associated with the monthly oceanic rain rates derived from the Special Sensor Microwave/Imager (SSM/I) data using the technique developed by Wilheit et al. are computed. Accounting for the beam-filling bias, a global annual average rain rate of 1.26 m is computed. The error estimation scheme is based on the existence of independent (morning and afternoon) estimates of the monthly mean. Calculations show overall random errors of about 50%?60% for each 5° ? 5° box. The results are insensitive to different sampling strategy (odd and even days of the month). Comparison of the SSM/I estimates with raingage data collected at the Pacific atoll stations showed a low bias of about 8%, a correlation of 0.7, and an rms difference of 55%.
    • Download: (350.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Random Errors of Oceanic Monthly Rainfall Derived from SSM/I Using Probability Distribution Functions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203119
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorChang, Alfred T. C.
    contributor authorChiu, Long S.
    contributor authorWilheit, Thomas T.
    date accessioned2017-06-09T16:09:33Z
    date available2017-06-09T16:09:33Z
    date copyright1993/08/01
    date issued1993
    identifier issn0027-0644
    identifier otherams-62248.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203119
    description abstractGlobal averages and random errors associated with the monthly oceanic rain rates derived from the Special Sensor Microwave/Imager (SSM/I) data using the technique developed by Wilheit et al. are computed. Accounting for the beam-filling bias, a global annual average rain rate of 1.26 m is computed. The error estimation scheme is based on the existence of independent (morning and afternoon) estimates of the monthly mean. Calculations show overall random errors of about 50%?60% for each 5° ? 5° box. The results are insensitive to different sampling strategy (odd and even days of the month). Comparison of the SSM/I estimates with raingage data collected at the Pacific atoll stations showed a low bias of about 8%, a correlation of 0.7, and an rms difference of 55%.
    publisherAmerican Meteorological Society
    titleRandom Errors of Oceanic Monthly Rainfall Derived from SSM/I Using Probability Distribution Functions
    typeJournal Paper
    journal volume121
    journal issue8
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1993)121<2351:REOOMR>2.0.CO;2
    journal fristpage2351
    journal lastpage2354
    treeMonthly Weather Review:;1993:;volume( 121 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian