YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of the Large-Amplitude Mesoscale Gravity-Wave Event of 15 December 1987 in the Central United States

    Source: Monthly Weather Review:;1993:;volume( 121 ):;issue: 008::page 2285
    Author:
    Powers, Jordan G.
    ,
    Reed, Richard J.
    DOI: 10.1175/1520-0493(1993)121<2285:NSOTLA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: An observational study, employing spectral methods, is first made to establish a background for a modeling effort of the mesoscale gravity-wave event of 15 December 1987. The waves are found to have wavelengths of 100?160 km, phase speeds of approximately 30 m s?1, and lifetimes of over 6 h. Conditions for their maintenance are evaluated, indicating the presence of a wave duct and a supportive role for wave-CISK. Convection, shearing instability, and geostrophic adjustment are all implicated as possible source mechanisms for the observed waves. The case is then simulated with the Pennsylvania State University?National Center for Atmospheric Research MM4 mesoscale forecast model, with the following primary objectives: (i) to test the model's ability to simulate a mesoscale gravity-wave event, (ii) to examine in detail the environments of mesoscale gravity-wave development, and (iii) to investigate the mechanisms of mesoscale gravity-wave generation and maintenance. The full-physics control experiment employed a 30-km grid, the Hsie et al. scheme for explicit moist processes, and a modified Arakawa?Schubert cumulus parameterization. From this experiment it is found that the model can successfully simulate mesoscale gravity waves and can capture many aspects of an observed wave event. For this case the model mesoscale gravity waves arose, matured, and decayed in the same regions as those observed and had similar timing and amplitudes. Model wave speeds, however, were 1?1.8 times those observed. The model output showed that although a good wave duct covered the wave activity area, the model waves were maintained and amplified by wave-CISK processes. These waves appeared to be generated by convection of mesoscale extent above a stable duct. This convection moved with the waves and was associated with steering levels. Model sensitivity experiments showed that (i) the model mesoscale gravity waves do not stern from initial data imbalances, (ii) model mesoscale gravity-wave development does not occur when latent heating is removed, (iii) model mesoscale gravity-wave production is not necessarily limited to the early hours of a simulation, and (iv) model mesoscale gravity waves can be produced using grid sizes up to 45 km. As applied to the actual case, it is concluded from the simulations that both ducting and wave-CISK contributed to the maintenance of the observed waves. Convection is indicated as the primary wave source, although evidence of shearing instability is also found. The model results, however, do not support the idea of generation by geostrophic adjustment.
    • Download: (2.240Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of the Large-Amplitude Mesoscale Gravity-Wave Event of 15 December 1987 in the Central United States

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203116
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorPowers, Jordan G.
    contributor authorReed, Richard J.
    date accessioned2017-06-09T16:09:32Z
    date available2017-06-09T16:09:32Z
    date copyright1993/08/01
    date issued1993
    identifier issn0027-0644
    identifier otherams-62245.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203116
    description abstractAn observational study, employing spectral methods, is first made to establish a background for a modeling effort of the mesoscale gravity-wave event of 15 December 1987. The waves are found to have wavelengths of 100?160 km, phase speeds of approximately 30 m s?1, and lifetimes of over 6 h. Conditions for their maintenance are evaluated, indicating the presence of a wave duct and a supportive role for wave-CISK. Convection, shearing instability, and geostrophic adjustment are all implicated as possible source mechanisms for the observed waves. The case is then simulated with the Pennsylvania State University?National Center for Atmospheric Research MM4 mesoscale forecast model, with the following primary objectives: (i) to test the model's ability to simulate a mesoscale gravity-wave event, (ii) to examine in detail the environments of mesoscale gravity-wave development, and (iii) to investigate the mechanisms of mesoscale gravity-wave generation and maintenance. The full-physics control experiment employed a 30-km grid, the Hsie et al. scheme for explicit moist processes, and a modified Arakawa?Schubert cumulus parameterization. From this experiment it is found that the model can successfully simulate mesoscale gravity waves and can capture many aspects of an observed wave event. For this case the model mesoscale gravity waves arose, matured, and decayed in the same regions as those observed and had similar timing and amplitudes. Model wave speeds, however, were 1?1.8 times those observed. The model output showed that although a good wave duct covered the wave activity area, the model waves were maintained and amplified by wave-CISK processes. These waves appeared to be generated by convection of mesoscale extent above a stable duct. This convection moved with the waves and was associated with steering levels. Model sensitivity experiments showed that (i) the model mesoscale gravity waves do not stern from initial data imbalances, (ii) model mesoscale gravity-wave development does not occur when latent heating is removed, (iii) model mesoscale gravity-wave production is not necessarily limited to the early hours of a simulation, and (iv) model mesoscale gravity waves can be produced using grid sizes up to 45 km. As applied to the actual case, it is concluded from the simulations that both ducting and wave-CISK contributed to the maintenance of the observed waves. Convection is indicated as the primary wave source, although evidence of shearing instability is also found. The model results, however, do not support the idea of generation by geostrophic adjustment.
    publisherAmerican Meteorological Society
    titleNumerical Simulation of the Large-Amplitude Mesoscale Gravity-Wave Event of 15 December 1987 in the Central United States
    typeJournal Paper
    journal volume121
    journal issue8
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1993)121<2285:NSOTLA>2.0.CO;2
    journal fristpage2285
    journal lastpage2308
    treeMonthly Weather Review:;1993:;volume( 121 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian