YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Influence of Coastal Orography: The Yakutat Storm

    Source: Monthly Weather Review:;1993:;volume( 121 ):;issue: 005::page 1388
    Author:
    Overland, James E.
    ,
    Bond, Nicholas
    DOI: 10.1175/1520-0493(1993)121<1388:TIOCOT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: An unforecast windstorm in the vicinity of Yakutat, Alaska, on 14 March 1979 illustrates the importance of ageostrophic dynamics within a coastal zone proximal to significant terrain. Large pressure rises [greater than 4 mb (3 h)?1]were observed along the southeastern Alaska coast after passage of a cold front when the low- level geostrophic flow was directed onshore. These pressure rises did not occur simultaneously along the coast, but rather propagated northward along the coast as a coherent pulse or surge. Strong surface winds (approximately 25?30 m s?1) were observed in the region of laid sea level pressure gradient at the leading edge of the surge and occurred after the passage of the synoptic front. Although the sparseness of the observations prevent definite conclusions, this feature resembles a Kelvin wave more than a density current. Omega dropwindsonde observations collected along the coast of Alaska during two other, less dramatic, situations suggest damming and downslope flow structures important to the interpretation of the Yakutat storm. Coastal semigeostrophic dynamics, that is, an ageostrophic momentum balance in the alongshore direction, occurs when the coastal mountains are hydrodynamically steep. The steep regime is defined by the nondimensional slope (hm/lm)N/f>1, where hm is mountain height, lmis mountain half-width, N is the static stability for the incident flow, and f is the Coriolis parameter. For typical values of N?10?2 s?1 the coast is wall-like when hm>0.01. Given a wall-like nature of the coast, trapped isolated mesoscale features, with an offshore length scale given by a Rossby radius of o(100 km), propagate alongshore ageostrophically due to a combination of Kelvin waves, density currents, or forced response. To correctly forecast in the coastal zone, numerical weather prediction models must qualitatively resolve terrain slopes so that the modeled dynamics are in the correct semigeostrophic or quasigeostrophic hydrodynamic regime.
    • Download: (860.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Influence of Coastal Orography: The Yakutat Storm

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203052
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorOverland, James E.
    contributor authorBond, Nicholas
    date accessioned2017-06-09T16:09:21Z
    date available2017-06-09T16:09:21Z
    date copyright1993/05/01
    date issued1993
    identifier issn0027-0644
    identifier otherams-62188.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203052
    description abstractAn unforecast windstorm in the vicinity of Yakutat, Alaska, on 14 March 1979 illustrates the importance of ageostrophic dynamics within a coastal zone proximal to significant terrain. Large pressure rises [greater than 4 mb (3 h)?1]were observed along the southeastern Alaska coast after passage of a cold front when the low- level geostrophic flow was directed onshore. These pressure rises did not occur simultaneously along the coast, but rather propagated northward along the coast as a coherent pulse or surge. Strong surface winds (approximately 25?30 m s?1) were observed in the region of laid sea level pressure gradient at the leading edge of the surge and occurred after the passage of the synoptic front. Although the sparseness of the observations prevent definite conclusions, this feature resembles a Kelvin wave more than a density current. Omega dropwindsonde observations collected along the coast of Alaska during two other, less dramatic, situations suggest damming and downslope flow structures important to the interpretation of the Yakutat storm. Coastal semigeostrophic dynamics, that is, an ageostrophic momentum balance in the alongshore direction, occurs when the coastal mountains are hydrodynamically steep. The steep regime is defined by the nondimensional slope (hm/lm)N/f>1, where hm is mountain height, lmis mountain half-width, N is the static stability for the incident flow, and f is the Coriolis parameter. For typical values of N?10?2 s?1 the coast is wall-like when hm>0.01. Given a wall-like nature of the coast, trapped isolated mesoscale features, with an offshore length scale given by a Rossby radius of o(100 km), propagate alongshore ageostrophically due to a combination of Kelvin waves, density currents, or forced response. To correctly forecast in the coastal zone, numerical weather prediction models must qualitatively resolve terrain slopes so that the modeled dynamics are in the correct semigeostrophic or quasigeostrophic hydrodynamic regime.
    publisherAmerican Meteorological Society
    titleThe Influence of Coastal Orography: The Yakutat Storm
    typeJournal Paper
    journal volume121
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1993)121<1388:TIOCOT>2.0.CO;2
    journal fristpage1388
    journal lastpage1397
    treeMonthly Weather Review:;1993:;volume( 121 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian