YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical Investigation of the Effects of Timing of Diabatic Processes in the Coastal Cyclogenesis of GALE IOP 2

    Source: Monthly Weather Review:;1993:;volume( 121 ):;issue: 004::page 1007
    Author:
    Holt, Teddy R.
    ,
    Chang, Simon W.
    DOI: 10.1175/1520-0493(1993)121<1007:ANIOTE>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Sensitivity of coastal cyclogenesis to the effects of timing of diabatic processes is investigated using the Naval Research Laboratory mesoscale model. Numerical experiments were conducted to examine the sensitivity of the intensification and propagation of a coastal cyclone to changes in the timing of latent heat release due to cumulus convection, surface fluxes, and low-level baroclinicity. The NMC Regional Analysis and Forecast System analysis of the GALE IOP 2 coastal cyclone was unable to resolve the initial subsynoptic-wale cyclogenesis. Hence, tracking and identification of a well-defined coastal cyclone was difficult operationally. However, the control model experiment having full physics, initialized with the NMC analyses, was able to properly simulate the development of the coastal cyclone. Results from the control experiment agree with the more accurate Fleet Numerical Oceanographic Center low-level analysis. The numerical experiments suggest the development of the surface cyclone was a result of proper superposition and interaction of the upper-level forcing and the low-level baroclinic zone. Altering the timing of latent heat release due to cumulus convection in the control experiment indicates that for the initial 12 h of cyclogenesis, cumulus convection as determined by the modified Kuo scheme has little effect on the deepening of the surface system but strongly changes the alignment of the trough by retarding the eastward propagation. It is during the second 12 h of cyclogenesis that cumulus convection is crucial for rapid cyclogenesis. Imposing a zonal sea surface temperature, in addition to withholding cumulus heating, has the most impact once the system has reached the coast. The enhanced coastal baroclinicity due to the zonal SST distribution causes the surface cyclone to propagate closer to the coast and more slowly than the control experiment. Allowing no surface fluxes, in addition to no cumulus convection, cools and stabilizes the boundary layer and inhibits surface intensification. The strong coastal baroclinicity is weakened without surface fluxes and the cyclone remains well onshore. An experiment to modify the phasing of the low-level baroclinic zone is conducted by imposing an additional linear increase in ground surface temperature to the typical diurnal heating cycle as well as eliminating ocean surface sensible beat flux for the initial 12 h of cyclogenesis. This results in a low-level temperature field that is out of phase with the typical diurnal surface evolution. The surface cyclone deepens much more rapidly [41 mb (24 h)?1] than the control experiment and remains more onshore with relatively little movement. In addition, potential vorticity analysis suggests that the upper levels for this experiment have much weaker protrusions of high potential vorticity into the lower troposphere compared to the control experiment.
    • Download: (2.504Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical Investigation of the Effects of Timing of Diabatic Processes in the Coastal Cyclogenesis of GALE IOP 2

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203027
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorHolt, Teddy R.
    contributor authorChang, Simon W.
    date accessioned2017-06-09T16:09:18Z
    date available2017-06-09T16:09:18Z
    date copyright1993/04/01
    date issued1993
    identifier issn0027-0644
    identifier otherams-62165.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203027
    description abstractSensitivity of coastal cyclogenesis to the effects of timing of diabatic processes is investigated using the Naval Research Laboratory mesoscale model. Numerical experiments were conducted to examine the sensitivity of the intensification and propagation of a coastal cyclone to changes in the timing of latent heat release due to cumulus convection, surface fluxes, and low-level baroclinicity. The NMC Regional Analysis and Forecast System analysis of the GALE IOP 2 coastal cyclone was unable to resolve the initial subsynoptic-wale cyclogenesis. Hence, tracking and identification of a well-defined coastal cyclone was difficult operationally. However, the control model experiment having full physics, initialized with the NMC analyses, was able to properly simulate the development of the coastal cyclone. Results from the control experiment agree with the more accurate Fleet Numerical Oceanographic Center low-level analysis. The numerical experiments suggest the development of the surface cyclone was a result of proper superposition and interaction of the upper-level forcing and the low-level baroclinic zone. Altering the timing of latent heat release due to cumulus convection in the control experiment indicates that for the initial 12 h of cyclogenesis, cumulus convection as determined by the modified Kuo scheme has little effect on the deepening of the surface system but strongly changes the alignment of the trough by retarding the eastward propagation. It is during the second 12 h of cyclogenesis that cumulus convection is crucial for rapid cyclogenesis. Imposing a zonal sea surface temperature, in addition to withholding cumulus heating, has the most impact once the system has reached the coast. The enhanced coastal baroclinicity due to the zonal SST distribution causes the surface cyclone to propagate closer to the coast and more slowly than the control experiment. Allowing no surface fluxes, in addition to no cumulus convection, cools and stabilizes the boundary layer and inhibits surface intensification. The strong coastal baroclinicity is weakened without surface fluxes and the cyclone remains well onshore. An experiment to modify the phasing of the low-level baroclinic zone is conducted by imposing an additional linear increase in ground surface temperature to the typical diurnal heating cycle as well as eliminating ocean surface sensible beat flux for the initial 12 h of cyclogenesis. This results in a low-level temperature field that is out of phase with the typical diurnal surface evolution. The surface cyclone deepens much more rapidly [41 mb (24 h)?1] than the control experiment and remains more onshore with relatively little movement. In addition, potential vorticity analysis suggests that the upper levels for this experiment have much weaker protrusions of high potential vorticity into the lower troposphere compared to the control experiment.
    publisherAmerican Meteorological Society
    titleA Numerical Investigation of the Effects of Timing of Diabatic Processes in the Coastal Cyclogenesis of GALE IOP 2
    typeJournal Paper
    journal volume121
    journal issue4
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1993)121<1007:ANIOTE>2.0.CO;2
    journal fristpage1007
    journal lastpage1029
    treeMonthly Weather Review:;1993:;volume( 121 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian