YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Terrain on the Surface Structure of Typhoons over Taiwan

    Source: Monthly Weather Review:;1993:;volume( 121 ):;issue: 003::page 734
    Author:
    Chang, C-P.
    ,
    Yeh, T-C.
    ,
    Chen, J. M.
    DOI: 10.1175/1520-0493(1993)121<0734:EOTOTS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The island of Taiwan is situated in the main path of western North Pacific typhoons. Its dominant central mountain range (CMR), with a hoizontal scale comparable to the radius of a typhoon, often produces significant distortions in the typhoon circulation. A 20-year dataset from 22 surface stations is used to describe the effects of the Taiwan terrain on the surface structure of typhoons. Empirical orthogonal function analysis on the pressure field is used to identify the primary structure modes. The first mode is a uniform-sign anomaly pattern portraying the decrease in pressure as a typhoon is approaching. The second mode represents the strong terrain-induced west-east pressure gradient that is normal to the main axis of the CMR. The third mode results mainly from the west-cast pressure gradient arising from the relative location of the typhoon center to the east or west of Taiwan, but it also contains a weak south-north pressure gradient that can he attributed to the terrain. A regression technique is then used to determine the surface wind, temperature, relative humidity, and hourly rainfall associated with each pressure mode. In all cases, them fields are consistent, showing the effects of the terrain blocking or deflection and their consequent ascending and descending motions. The relative importance of each mode depends strongly on the location of the typhoon center. No dependence on the direction or speed of motion is discernible when all cases are considered. When different, persistently smooth tracks are identified, the variations due to motion direction can be recognized because the terrain effect is affected by the mean steering flow. Only two types of smooth tracks that represent clearly different steering flows intersect in an area. At the intersection, a subsequent difference in storm structure over Taiwan exists that can be explained by the difference in the steering flows associated with the two track types. The leeside secondary low that was often observed on the west coast of Taiwan is found to consist of at least two basic modes. It develops only when the typhoon center is in southeastern Taiwan or an ocean area to the east-southeast. The observed scale of this low is significantly smaller than that which can be produced by an interaction of the mean steering flow and the CMR. This smaller scale is due to a local buildup of the surface pressure south of the lee vortex, which results from the against-mountain return flow of the cyclonic circulation.
    • Download: (1.380Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Terrain on the Surface Structure of Typhoons over Taiwan

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4203008
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorChang, C-P.
    contributor authorYeh, T-C.
    contributor authorChen, J. M.
    date accessioned2017-06-09T16:09:15Z
    date available2017-06-09T16:09:15Z
    date copyright1993/03/01
    date issued1993
    identifier issn0027-0644
    identifier otherams-62148.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4203008
    description abstractThe island of Taiwan is situated in the main path of western North Pacific typhoons. Its dominant central mountain range (CMR), with a hoizontal scale comparable to the radius of a typhoon, often produces significant distortions in the typhoon circulation. A 20-year dataset from 22 surface stations is used to describe the effects of the Taiwan terrain on the surface structure of typhoons. Empirical orthogonal function analysis on the pressure field is used to identify the primary structure modes. The first mode is a uniform-sign anomaly pattern portraying the decrease in pressure as a typhoon is approaching. The second mode represents the strong terrain-induced west-east pressure gradient that is normal to the main axis of the CMR. The third mode results mainly from the west-cast pressure gradient arising from the relative location of the typhoon center to the east or west of Taiwan, but it also contains a weak south-north pressure gradient that can he attributed to the terrain. A regression technique is then used to determine the surface wind, temperature, relative humidity, and hourly rainfall associated with each pressure mode. In all cases, them fields are consistent, showing the effects of the terrain blocking or deflection and their consequent ascending and descending motions. The relative importance of each mode depends strongly on the location of the typhoon center. No dependence on the direction or speed of motion is discernible when all cases are considered. When different, persistently smooth tracks are identified, the variations due to motion direction can be recognized because the terrain effect is affected by the mean steering flow. Only two types of smooth tracks that represent clearly different steering flows intersect in an area. At the intersection, a subsequent difference in storm structure over Taiwan exists that can be explained by the difference in the steering flows associated with the two track types. The leeside secondary low that was often observed on the west coast of Taiwan is found to consist of at least two basic modes. It develops only when the typhoon center is in southeastern Taiwan or an ocean area to the east-southeast. The observed scale of this low is significantly smaller than that which can be produced by an interaction of the mean steering flow and the CMR. This smaller scale is due to a local buildup of the surface pressure south of the lee vortex, which results from the against-mountain return flow of the cyclonic circulation.
    publisherAmerican Meteorological Society
    titleEffects of Terrain on the Surface Structure of Typhoons over Taiwan
    typeJournal Paper
    journal volume121
    journal issue3
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1993)121<0734:EOTOTS>2.0.CO;2
    journal fristpage734
    journal lastpage752
    treeMonthly Weather Review:;1993:;volume( 121 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian