YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of Topographically Forced Mesoscale Variability in a Well-Mixed Marine Layer

    Source: Monthly Weather Review:;1992:;volume( 120 ):;issue: 012::page 2881
    Author:
    Eddington, Lee W.
    ,
    O'brien, J. J.
    ,
    Stuart, D. W.
    DOI: 10.1175/1520-0493(1992)120<2881:NSOTFM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A simple nonlinear numerical model of a well-mixed marine layer is used to study topographically forced mesoscale variability off coastal California. The model is used to simulate a persistent wind maximum observed near Point Conception during northwesterly winds. The model also demonstrates the development of a coastally trapped Kelvin wave and a marine-layer eddy when the large-scale forcing is suddenly reduced. The model is a one-layer, two-dimensional, gridpoint model with idealized coastal topography. The model assumes that potential temperature and wind are constant with height in the layer and that the layer is capped by an inversion. Effects of diabatic heating, water vapor, entrainment, and spatial variations of potential temperature are neglected in order to focus on topographic effects. The model solves for the two horizontal components of the marine-layer wind and the marine-layer height. A comparison of the model results with observations taken near Point Conception during the 1983 OPUS (Organization of Persistent Upwelling Structures) project shows that the model simulates the general features of the observed mesoscale wind maximum. The success is due to the very fine grid size of 3.5 km. The model wind perturbation and along-trajectory acceleration show the effect of the prominent Arguello headland on the marine-layer wind. The northwesterly flow is blocked by the headland on the upwind side, and this causes the marine-layer height to rise there. On the downwind side the northwesterly flow removes mass from the region, and the marine-layer height decreases. This perturbation in the marine-layer height creates a local pressure-gradient force that is responsible for the existence of the wind maximum. The model simulation of the marine-layer height is found to be in agreement with observations in the region. The model also simulates a solitary atmospheric Kelvin wave crest in the marine layer north of the Arguello headland and a marine layer eddy to the south of the headland when the large-scale forcing is sharply reduced. Model simulation of these phenomena supports the hypothesis that they are coastally trapped marine-layer responses to changes in synoptic-scale forcing.
    • Download: (1.082Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of Topographically Forced Mesoscale Variability in a Well-Mixed Marine Layer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4202926
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorEddington, Lee W.
    contributor authorO'brien, J. J.
    contributor authorStuart, D. W.
    date accessioned2017-06-09T16:09:04Z
    date available2017-06-09T16:09:04Z
    date copyright1992/12/01
    date issued1992
    identifier issn0027-0644
    identifier otherams-62074.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4202926
    description abstractA simple nonlinear numerical model of a well-mixed marine layer is used to study topographically forced mesoscale variability off coastal California. The model is used to simulate a persistent wind maximum observed near Point Conception during northwesterly winds. The model also demonstrates the development of a coastally trapped Kelvin wave and a marine-layer eddy when the large-scale forcing is suddenly reduced. The model is a one-layer, two-dimensional, gridpoint model with idealized coastal topography. The model assumes that potential temperature and wind are constant with height in the layer and that the layer is capped by an inversion. Effects of diabatic heating, water vapor, entrainment, and spatial variations of potential temperature are neglected in order to focus on topographic effects. The model solves for the two horizontal components of the marine-layer wind and the marine-layer height. A comparison of the model results with observations taken near Point Conception during the 1983 OPUS (Organization of Persistent Upwelling Structures) project shows that the model simulates the general features of the observed mesoscale wind maximum. The success is due to the very fine grid size of 3.5 km. The model wind perturbation and along-trajectory acceleration show the effect of the prominent Arguello headland on the marine-layer wind. The northwesterly flow is blocked by the headland on the upwind side, and this causes the marine-layer height to rise there. On the downwind side the northwesterly flow removes mass from the region, and the marine-layer height decreases. This perturbation in the marine-layer height creates a local pressure-gradient force that is responsible for the existence of the wind maximum. The model simulation of the marine-layer height is found to be in agreement with observations in the region. The model also simulates a solitary atmospheric Kelvin wave crest in the marine layer north of the Arguello headland and a marine layer eddy to the south of the headland when the large-scale forcing is sharply reduced. Model simulation of these phenomena supports the hypothesis that they are coastally trapped marine-layer responses to changes in synoptic-scale forcing.
    publisherAmerican Meteorological Society
    titleNumerical Simulation of Topographically Forced Mesoscale Variability in a Well-Mixed Marine Layer
    typeJournal Paper
    journal volume120
    journal issue12
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1992)120<2881:NSOTFM>2.0.CO;2
    journal fristpage2881
    journal lastpage2896
    treeMonthly Weather Review:;1992:;volume( 120 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian