YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Use of Four-Dimensional Data Assimilation in a Limited-Area Mesoscale Model Part II: Effects of Data Assimilation within the Planetary Boundary Layer

    Source: Monthly Weather Review:;1990:;volume( 119 ):;issue: 003::page 734
    Author:
    Stauffer, David R.
    ,
    Seaman, Nelson L.
    ,
    Binkowski, Francis S.
    DOI: 10.1175/1520-0493(1991)119<0734:UOFDDA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A four-dimensional data assimilation (FDDA) scheme based on Newtonian relaxation or nudging has been developed and evaluated in the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) Limited-Area Mesoscale Model. It was shown in Part I of this study that continuous assimilation of standard-resolution rawinsonde observations throughout a model integration, rather than at only the initial time, can successfully limit large model error growth (amplitude and phase errors) while the model maintains intervariable consistency and generates realistic mesoscale structures not resolved by the data. The purpose of this paper is to further refine the previously reported FDDA strategy used to produce ?dynamic analyses? of the atmosphere by investigating the effects of data assimilation within the planetary boundary layer (PBL). The data used for assimilation include conventional synoptic-scale rawinsonde data and mesoalpha-scale surface data. The main objective of this study is to determine how to effectively utilize the combined strength of these two simple data systems while avoiding their individual weaknesses. Ten experiments, which use a 15-layer version of the model, are evaluated for two midlatitude, real-data cases. It is found that the homogenizing effect of vertical mixing during free convective conditions allows the three-hourly surface-layer wind and mixing ratio observations to be applied throughout the model PBL according to an idealized conceptual model of boundary-layer structure. Single-level surface temperature observations, however, are often poorly representative of the boundary layer as a whole (e.g., shallow superadiabatic layers, nocturnal inversions), and are more attractive for FDDA applications when additional vertical profile information is available. Assimilation of surface wind and moisture data throughout the model PBL generally showed a positive impact on the simulated precipitation by better reserving the low-level structure and movement of systems (e.g., cyclones, fronts) during the 12-h periods bracketed by the standard rawinsonde data. Improved precipitation simulations due to assimilation of surface data are also possible even in cases with weak large-scale forcing, because a significant portion of the vertically integrated moisture convergence often occurs in the boundary layer. Overall, the best dynamic analyses of precipitation, PBL depth, surface-layer temperature and tropospheric mass and wind fields were obtained by nudging to analyses of rawinsonde wind, temperature, and moisture above the model PBL and to analyses of surface-layer wind and moisture within the model PBL.
    • Download: (1.829Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Use of Four-Dimensional Data Assimilation in a Limited-Area Mesoscale Model Part II: Effects of Data Assimilation within the Planetary Boundary Layer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4202574
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorStauffer, David R.
    contributor authorSeaman, Nelson L.
    contributor authorBinkowski, Francis S.
    date accessioned2017-06-09T16:08:13Z
    date available2017-06-09T16:08:13Z
    date copyright1991/03/01
    date issued1990
    identifier issn0027-0644
    identifier otherams-61758.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4202574
    description abstractA four-dimensional data assimilation (FDDA) scheme based on Newtonian relaxation or nudging has been developed and evaluated in the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) Limited-Area Mesoscale Model. It was shown in Part I of this study that continuous assimilation of standard-resolution rawinsonde observations throughout a model integration, rather than at only the initial time, can successfully limit large model error growth (amplitude and phase errors) while the model maintains intervariable consistency and generates realistic mesoscale structures not resolved by the data. The purpose of this paper is to further refine the previously reported FDDA strategy used to produce ?dynamic analyses? of the atmosphere by investigating the effects of data assimilation within the planetary boundary layer (PBL). The data used for assimilation include conventional synoptic-scale rawinsonde data and mesoalpha-scale surface data. The main objective of this study is to determine how to effectively utilize the combined strength of these two simple data systems while avoiding their individual weaknesses. Ten experiments, which use a 15-layer version of the model, are evaluated for two midlatitude, real-data cases. It is found that the homogenizing effect of vertical mixing during free convective conditions allows the three-hourly surface-layer wind and mixing ratio observations to be applied throughout the model PBL according to an idealized conceptual model of boundary-layer structure. Single-level surface temperature observations, however, are often poorly representative of the boundary layer as a whole (e.g., shallow superadiabatic layers, nocturnal inversions), and are more attractive for FDDA applications when additional vertical profile information is available. Assimilation of surface wind and moisture data throughout the model PBL generally showed a positive impact on the simulated precipitation by better reserving the low-level structure and movement of systems (e.g., cyclones, fronts) during the 12-h periods bracketed by the standard rawinsonde data. Improved precipitation simulations due to assimilation of surface data are also possible even in cases with weak large-scale forcing, because a significant portion of the vertically integrated moisture convergence often occurs in the boundary layer. Overall, the best dynamic analyses of precipitation, PBL depth, surface-layer temperature and tropospheric mass and wind fields were obtained by nudging to analyses of rawinsonde wind, temperature, and moisture above the model PBL and to analyses of surface-layer wind and moisture within the model PBL.
    publisherAmerican Meteorological Society
    titleUse of Four-Dimensional Data Assimilation in a Limited-Area Mesoscale Model Part II: Effects of Data Assimilation within the Planetary Boundary Layer
    typeJournal Paper
    journal volume119
    journal issue3
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1991)119<0734:UOFDDA>2.0.CO;2
    journal fristpage734
    journal lastpage754
    treeMonthly Weather Review:;1990:;volume( 119 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian