The 27–28 October 1986 FIRE IFO Cirrus Case Study: A Five Lidar Overview of Cloud Structure and EvolutionSource: Monthly Weather Review:;1990:;volume( 118 ):;issue: 011::page 2288Author:Sassen, Kenneth
,
Grund, Christian J.
,
Spinhirne, James D.
,
Hardesty, Michael M.
,
Alvarez, Jose M.
DOI: 10.1175/1520-0493(1990)118<2288:TOFICC>2.0.CO;2Publisher: American Meteorological Society
Abstract: Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32-h period during this cue study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented here describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: (a) dissipating subvisual and ?thin? fibrous cirrus cloud bands, (b) an isolated mesoscale uncinus complex (MUC), (c) a large-scale, deep cloud that developed into an organized cirrus structure within the lidar array, and (d) a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fallstreaks emanating from generating regions at or near cloud tops, glaciating supercooled (?30° to ?35°C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from ?1.0-km cirrus uncinus cells, to organized MUC structures up to ?120 km across.
|
Collections
Show full item record
contributor author | Sassen, Kenneth | |
contributor author | Grund, Christian J. | |
contributor author | Spinhirne, James D. | |
contributor author | Hardesty, Michael M. | |
contributor author | Alvarez, Jose M. | |
date accessioned | 2017-06-09T16:08:01Z | |
date available | 2017-06-09T16:08:01Z | |
date copyright | 1990/11/01 | |
date issued | 1990 | |
identifier issn | 0027-0644 | |
identifier other | ams-61681.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4202488 | |
description abstract | Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32-h period during this cue study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented here describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: (a) dissipating subvisual and ?thin? fibrous cirrus cloud bands, (b) an isolated mesoscale uncinus complex (MUC), (c) a large-scale, deep cloud that developed into an organized cirrus structure within the lidar array, and (d) a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fallstreaks emanating from generating regions at or near cloud tops, glaciating supercooled (?30° to ?35°C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from ?1.0-km cirrus uncinus cells, to organized MUC structures up to ?120 km across. | |
publisher | American Meteorological Society | |
title | The 27–28 October 1986 FIRE IFO Cirrus Case Study: A Five Lidar Overview of Cloud Structure and Evolution | |
type | Journal Paper | |
journal volume | 118 | |
journal issue | 11 | |
journal title | Monthly Weather Review | |
identifier doi | 10.1175/1520-0493(1990)118<2288:TOFICC>2.0.CO;2 | |
journal fristpage | 2288 | |
journal lastpage | 2312 | |
tree | Monthly Weather Review:;1990:;volume( 118 ):;issue: 011 | |
contenttype | Fulltext |