YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Theoretical, Discrete, and Actual Response of the Barnes Objective Analysis Scheme for One- and Two-Dimensional Fields

    Source: Monthly Weather Review:;1990:;volume( 118 ):;issue: 005::page 1145
    Author:
    Pauley, Patricia M.
    ,
    Wu, Xiaihua
    DOI: 10.1175/1520-0493(1990)118<1145:TTDAAR>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: This paper examines the response of the Barnes objective analysis scheme as a function of wavenumber or wavelength and extends previous work in two primary areas. First, the first- and second-pass theoretical response functions for continuous two-dimensional (2-D) fields are derived using Fourier transforms and compared with Barnes' (1973) responses for one-dimensional (1-D) waves. All responses are nondimensionalized with respect to a smoothing scale length, such that the first-pass responses are a function only of nondimensional wavelength. The 2-D response is of the same functional form as the 1-D response, with the 2-D wavenumber substituted for the 1-D wavenumber. The 2-D response departs significantly from the 1-D value (for the same x-component of the wavelength) when the y-component of the wavelength is less than approximately ten scale lengths, a condition applying to most fields with closed centers as well as open waves with a significant latitudinal variation. Second, the continuous theoretical response for 1-D and 2-D waves is compared with the response for discrete applications of the scheme using uniformly spaced observations. This response is evaluated two different ways. The discrete theoretical response is found by discretizing the Barnes scheme with a 2-D ?comb? function for cases in which interpolation points are either coincident with or midway between observation points. The response can then be evaluated with Fourier transforms in much the same way as for the continuous case. The discrete response evaluated in this manner attains a minimum at the Nyquist wavelength, with enhanced values for smaller unresolvable wavelengths resulting from aliasing. The discrete response is approximately equal to the sum of the responses for the original wavelength and for a primary aliased wavelength. At larger resolvable wavelengths, the discrete response approaches the continuous value as aliasing becomes negligible. The second means of examining the response for discrete applications is through a Fourier series analysis of fields interpolated by the Barnes scheme. The ?observations? in this context are given by analytic functions on a uniform mesh which may or may not differ from the analysis grid. A given input wavelength leads to an analysis which contains waves at one or more aliased wavelengths in addition to the original wavelength. Components of the response corresponding to each of these wavelengths can be estimated as the Fourier amplitude of the interpolated field divided by the amplitude of the input wave. The actual response from a discrete application of the Barnes scheme confirms the results of the analysis of the discrete theoretical response; aliasing to longer wavelengths is seen for nonresolvable wavelengths in the ?observations,? while the actual response is close to the theoretical value for well resolved wavelengths for both 1-D and 2-D fields. This analysis of the discrete and actual response supports the recommendations of Caracena et al. and Koch et al. for the relationship between the smoothing scale length and the observation spacing. Setting the smoothing scale length to approximately four-thirds of the observation spacing, the upper bound recommended by Caracena et al., yields a response close to the continuous value for resolvable wavelengths, with a reasonably small degree of aliasing. However, the case in which the smoothing scale length is equal to the observation spacing, the lower bound recommended by Caracena et al., retains an unacceptably high degree of aliasing in a typical two-pass application of the Barnes scheme.
    • Download: (1.595Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Theoretical, Discrete, and Actual Response of the Barnes Objective Analysis Scheme for One- and Two-Dimensional Fields

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4202409
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorPauley, Patricia M.
    contributor authorWu, Xiaihua
    date accessioned2017-06-09T16:07:50Z
    date available2017-06-09T16:07:50Z
    date copyright1990/05/01
    date issued1990
    identifier issn0027-0644
    identifier otherams-61609.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4202409
    description abstractThis paper examines the response of the Barnes objective analysis scheme as a function of wavenumber or wavelength and extends previous work in two primary areas. First, the first- and second-pass theoretical response functions for continuous two-dimensional (2-D) fields are derived using Fourier transforms and compared with Barnes' (1973) responses for one-dimensional (1-D) waves. All responses are nondimensionalized with respect to a smoothing scale length, such that the first-pass responses are a function only of nondimensional wavelength. The 2-D response is of the same functional form as the 1-D response, with the 2-D wavenumber substituted for the 1-D wavenumber. The 2-D response departs significantly from the 1-D value (for the same x-component of the wavelength) when the y-component of the wavelength is less than approximately ten scale lengths, a condition applying to most fields with closed centers as well as open waves with a significant latitudinal variation. Second, the continuous theoretical response for 1-D and 2-D waves is compared with the response for discrete applications of the scheme using uniformly spaced observations. This response is evaluated two different ways. The discrete theoretical response is found by discretizing the Barnes scheme with a 2-D ?comb? function for cases in which interpolation points are either coincident with or midway between observation points. The response can then be evaluated with Fourier transforms in much the same way as for the continuous case. The discrete response evaluated in this manner attains a minimum at the Nyquist wavelength, with enhanced values for smaller unresolvable wavelengths resulting from aliasing. The discrete response is approximately equal to the sum of the responses for the original wavelength and for a primary aliased wavelength. At larger resolvable wavelengths, the discrete response approaches the continuous value as aliasing becomes negligible. The second means of examining the response for discrete applications is through a Fourier series analysis of fields interpolated by the Barnes scheme. The ?observations? in this context are given by analytic functions on a uniform mesh which may or may not differ from the analysis grid. A given input wavelength leads to an analysis which contains waves at one or more aliased wavelengths in addition to the original wavelength. Components of the response corresponding to each of these wavelengths can be estimated as the Fourier amplitude of the interpolated field divided by the amplitude of the input wave. The actual response from a discrete application of the Barnes scheme confirms the results of the analysis of the discrete theoretical response; aliasing to longer wavelengths is seen for nonresolvable wavelengths in the ?observations,? while the actual response is close to the theoretical value for well resolved wavelengths for both 1-D and 2-D fields. This analysis of the discrete and actual response supports the recommendations of Caracena et al. and Koch et al. for the relationship between the smoothing scale length and the observation spacing. Setting the smoothing scale length to approximately four-thirds of the observation spacing, the upper bound recommended by Caracena et al., yields a response close to the continuous value for resolvable wavelengths, with a reasonably small degree of aliasing. However, the case in which the smoothing scale length is equal to the observation spacing, the lower bound recommended by Caracena et al., retains an unacceptably high degree of aliasing in a typical two-pass application of the Barnes scheme.
    publisherAmerican Meteorological Society
    titleThe Theoretical, Discrete, and Actual Response of the Barnes Objective Analysis Scheme for One- and Two-Dimensional Fields
    typeJournal Paper
    journal volume118
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1990)118<1145:TTDAAR>2.0.CO;2
    journal fristpage1145
    journal lastpage1164
    treeMonthly Weather Review:;1990:;volume( 118 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian