YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thunderstorms above Frontal Surfaces in Environments without Positive CAPE. Part II: Organization and Instability Mechanisms

    Source: Monthly Weather Review:;1990:;volume( 118 ):;issue: 005::page 1123
    Author:
    Colman, Bradley R.
    DOI: 10.1175/1520-0493(1990)118<1123:TAFSIE>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The second of two papers describing thunderstorms that occur above frontal surfaces, frequently in environments without positive convective available potential energy (CAPE), focuses on an impressive outbreak of elevated thunderstorms during AVE-SESAME I. It is shown that the thunderstorms occurred in three convective impulses, each of which developed in the warm sector before propagating onto the frontal surface; subsequent thunderstorms developed over the frontal surface. While in the warm sector, the convection was supported by an extremely unstable boundary layer. However, this convective energy quickly diminished above the frontal surface and thunderstorms continued and developed for many hours in an essentially stable hydrostatic environment. During the lifetime of these impulses, mesoscale updrafts developed and moved with the convective areas, maintaining nearly steady-state systems with strong low-level inflow. The environment was found to be symmetrically neutral in the region of the inflow. Numerous pressure waves were observed in association with the elevated thunderstorms, yet thew features were evidently not important in triggering of the storms. An investigation of a convective band that formed above the frontal surface revealed that the development probably took place in two steps. Initially, high ?e air overlying the frontal inversion was stable to vertical displacements, but inertially unstable. Then, along the instantaneous path of the unstable parcel, the thermodynamic structure changed, the parcel became gravitationally unstable, and upright convection resulted.
    • Download: (1.637Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thunderstorms above Frontal Surfaces in Environments without Positive CAPE. Part II: Organization and Instability Mechanisms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4202408
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorColman, Bradley R.
    date accessioned2017-06-09T16:07:50Z
    date available2017-06-09T16:07:50Z
    date copyright1990/05/01
    date issued1990
    identifier issn0027-0644
    identifier otherams-61608.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4202408
    description abstractThe second of two papers describing thunderstorms that occur above frontal surfaces, frequently in environments without positive convective available potential energy (CAPE), focuses on an impressive outbreak of elevated thunderstorms during AVE-SESAME I. It is shown that the thunderstorms occurred in three convective impulses, each of which developed in the warm sector before propagating onto the frontal surface; subsequent thunderstorms developed over the frontal surface. While in the warm sector, the convection was supported by an extremely unstable boundary layer. However, this convective energy quickly diminished above the frontal surface and thunderstorms continued and developed for many hours in an essentially stable hydrostatic environment. During the lifetime of these impulses, mesoscale updrafts developed and moved with the convective areas, maintaining nearly steady-state systems with strong low-level inflow. The environment was found to be symmetrically neutral in the region of the inflow. Numerous pressure waves were observed in association with the elevated thunderstorms, yet thew features were evidently not important in triggering of the storms. An investigation of a convective band that formed above the frontal surface revealed that the development probably took place in two steps. Initially, high ?e air overlying the frontal inversion was stable to vertical displacements, but inertially unstable. Then, along the instantaneous path of the unstable parcel, the thermodynamic structure changed, the parcel became gravitationally unstable, and upright convection resulted.
    publisherAmerican Meteorological Society
    titleThunderstorms above Frontal Surfaces in Environments without Positive CAPE. Part II: Organization and Instability Mechanisms
    typeJournal Paper
    journal volume118
    journal issue5
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(1990)118<1123:TAFSIE>2.0.CO;2
    journal fristpage1123
    journal lastpage1144
    treeMonthly Weather Review:;1990:;volume( 118 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian